Fractal Analysis and Fractography: What Can we Learn that’s New?

Article Preview

Abstract:

The tenets of fractography are well known. The principles of fractal geometry have been applied to fracture surfaces for several decades. How these two fields can be used in a synergistic manner eludes many. The key element in discovering that a fracture surface is fractal is that the features we observe with the naked or aided eye also occur at the atomic scale! Thus, we should be able to interpret the mirror, mist and hackle boundaries in terms of atomic bond breaking. I will present a consistent hypothesis for relating the bond breaking process at the atomic scale to the features we all observe on the fracture surface of materials. I suggest these can be related through one equation: 2 = E a0 D*, where  is the fracture energy, E is the elastic modulus, a0 is a characteristic dimension related to the structure of the material, and D* is the fractal dimensional increment. In turn, D* = c/r1 for which c is the crack size and r1 is the mirror mist boundary radius. Thus, the energy expended in fracture at the atomic scale is encoded on the fracture surface features we observe. The novel combination of fractography, fracture mechanics and fractal geometry can be combined to create a powerful tool for forensic analysis, research investigations and production analyses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-153

Citation:

Online since:

March 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.W. Preston: J. Soc. of Glass Tech. Vol. 10 (1926), p.234.

Google Scholar

[2] E.B. Shand: J. Am. Ceram. Soc. Vol. 42 (10) (1959), p.474.

Google Scholar

[3] H. Wallner: Z. Phys. Vol. 114 (1939), p.368.

Google Scholar

[4] Ch. De Freminville: Rev. Met, Vol. 11 (1914), p.971.

Google Scholar

[5] R.W. Rice: Ceramic fracture features, Observations, Mechanisms and Uses, in Fractography of Ceramic and Metal Failures, edited by J. J. Mecholsky, Jr. and S. R. Powell, Jr., ASTM STP 827, Philadelphia PA (1984), pp.5-102.

DOI: 10.1520/stp37106s

Google Scholar

[6] S.W. Freiman, J.J. Mecholsky, Jr. and P.F. Becher: Fractography: A Quantitative Measure of the Fracture Process in Ceramic Trans. 17, Am. Ceram. Soc., (1991), pp.55-78.

Google Scholar

[7] J.C. Russ: Fractal Surfaces. Plenum Press, NY (1996).

Google Scholar

[8] B.B. Mandelbrot, D.E. Passoja and J. Paullay: Nature Vol. 308 (1984), p. 721ff.

Google Scholar

[9] A. Della Bona, T.J. Hill and J.J. Mecholsky Jr.: J. Mater. Sci. Vol. 36 (2001), p.2645.

Google Scholar

[10] T. J. Hill, A. Della Bona and J. J. Mecholsky, Jr.: J. Mater. Sci. Vol. 36 (2001), p.2651.

Google Scholar

[11] J.J. Mecholsky, Jr., T.J. Mackin and D.E. Passoja: Self-similar Crack propagation in Brittle Materials, Adv. In Ceramics 22: Fractography of Ceramics and Glasses, edited by Varner and Frechette, Am. Ceram. Soc. (1988).

Google Scholar

[12] Y. Fahmy, J.C. Russ and C.C. Koch: J. Mater. Sci. Vol. 6 (1991), p.1856.

Google Scholar

[13] J.J. Mecholsky, D.E. Passoja and K.S. Feinberg-Ringel: J. Am. Ceram. Soc. Vol. 72.

Google Scholar

[1] (1989), p.60.

Google Scholar

[14] P.N. Randall: Plain Strain Crack Toughness Testing of High Strength Metallic Materials in ASTM STP 410 (1988), p.88.

Google Scholar

[15] J.J. Mecholsky, Jr. and S.W. Freiman: J. Am. Ceram. Soc. Vol. 74.

Google Scholar

[12] (1991), p.3136.

Google Scholar

[16] Y.L. Tsai, T. P Swiler, J. H Simmons and J.J. Mecholsky, Jr., in: Computational Modelling of Materials and Processing, edited by J. H. Simmons et al., Ceram. Trans. Vol. 69 (1997), p.217.

Google Scholar

[17] J.K. West and L. L. Hench: Phil. Mag. A Vol. 77(1) (1998), p.85.

Google Scholar

[18] J.K. West, J.J. Mecholsky, Jr. and L.L. Hench: J. Non-Cryst. Solids Vol. 260 (1999), p.99.

Google Scholar

[19] G.W. Quinn, J. Quinn, J.J. Mecholsky, Jr. and G.D. Quinn, in: Ceramic Engineering and Science Proceedings. Vol. 26 no. 2, (2005), p.77.

Google Scholar

[20] J.J. Mecholsky, Jr.: Mater. Lett. Vol. 60 (2006), p.2485.

Google Scholar

[21] J. Quinn, G. Quinn, J. Kelly and S. Scherrer: Dent. Mater. Vol. 21 (10) (2005), p.920.

Google Scholar

[22] B. Taskonak, J. Yan, J. J. Mecholsky, Jr., A. Sertgöz and A. Koçak: Dent. Mater. Vol. 24 (8) (2008), p.1077.

Google Scholar

[23] S.S. Scherrer, J.B. Quinn, G.D. Quinn et al.: Int. J. Prosthodont. Vol. 19 (2006), p.185.

Google Scholar

[24] Y. Thompson, K.J. Anusavice, A. Naman and H.F. Morris: J. Dental Res. Vol 73 (1994), p.1824.

Google Scholar

[25] J.Y. Thompson, K.J. Anusavice, B. Balasunramaniam and J. J. Mecholsky, Jr.: J. Am. Ceram. Soc. Vol. 78 (11) (1995), p.3045.

Google Scholar

[26] T. J. Hill, J. J. Mecholsky, Jr. and K. J. Anusavice: J. Am. Ceram. Soc. Vol. 83 (3) (2000), p.545.

Google Scholar

[27] K.T. Faber and A.G. Evans: Acta Metal. Vol. 31, no. 4 (1983), p.577.

Google Scholar

[28] I. Hucklenbroich, G. Stein, H. Chin, W. Trojahn and E. Streit: Mater. Sci. Forum Vol. 318 (1999), p.161.

Google Scholar

[29] Z. Chen, J. Cuneo, J. J. Mecholsky, Jr. and S. F. Hu: Wear Vol. 198 (1996), p.197.

Google Scholar

[30] W.W. Chen, A. M. Rajendram, B. Song and X. Nie: J. Am. Ceram. Soc. Vol. 90 (4) (2007), p.1005.

Google Scholar

[31] J.E. Kooi, R. Tandon, S.J. Glass and J.J. Mecholsky, Jr.: J. Mater. Res., Vol. 23, No. 1, (2008), p.214.

Google Scholar

[32] J.J. Mecholsky, Jr., R. Linhart, B.D. Kwitkin and R. Rice: J. Mater. Res. Vol. 13 (1998), p.3153.

Google Scholar