Experimental Verification and Comparison of Mode Shape-Based Damage Detection Methods

Abstract:

Article Preview

This paper presents experimental verification and comparison of damage detection methods based on changes in mode shapes such as: mode shape curvature (MSC), modal assurance criterion (MAC), strain energy (SE), modified Laplacian operator (MLO), generalized fractal dimension (GFD) and Wavelets Transform (WT). The object of the investigation is to determine benefits and drawbacks of the aforementioned methods and to develop data preprocessing algorithms for increasing damage assessment effectiveness by using signal processing techniques such as interpolation and extrapolation measured points. Noise reduction algorithms based on moving average, median filter and wavelet decomposition are also tested. The experiments were performed on a 1m long steal cantilever beam. Damage was introduced in form of 10% and 20% deep saw cut, placed in 10%, 30%, 50%, 70% and 90% beam length. Measurements were made using non-contact Scanning Laser Doppler Vibrometer at 125 points equally spaced along beam length.

Info:

Periodical:

Key Engineering Materials (Volumes 413-414)

Edited by:

F. Chu, H. Ouyang, V. Silberschmidt, L. Garibaldi, C.Surace, W.M. Ostachowicz and D. Jiang

Pages:

699-706

DOI:

10.4028/www.scientific.net/KEM.413-414.699

Citation:

M. Radzieński et al., "Experimental Verification and Comparison of Mode Shape-Based Damage Detection Methods", Key Engineering Materials, Vols. 413-414, pp. 699-706, 2009

Online since:

June 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.