Using Modal Analysis and Optimization to Determine Elastic Constants of Thick Composite Plates

Article Preview

Abstract:

This paper presents an inverse method to derive the elastic constants of thick composite plates from the resonance frequencies of a free-edge test specimen based on modal vibration test. A mixed numerical experimental identification procedure is used for this purpose. The sum of the squared differences between the experimental frequencies and analytical frequencies from finite element method is chosen as the objective function. The optimization techniques, Hybrid Genetic /Simulated Annealing algorithm, have been applied to determine the elastic constants. As the objective function reaches its minimum, its corresponding design variables are the elastic constants of the material. The present method is applied to determine the elastic constants of AS4/PEKK material. The results indicate that different stacking sequences and numbers of frequencies have effects on the determination of elastic constants of the materials.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 419-420)

Pages:

473-476

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Forster: Ein neues Messverfahren zur Bestimmung des Elastizitats-moduls und der Dampfung, Zeitschrift fuer Metallkunde 29 (1937) pp.109-115.

Google Scholar

[2] H. Sol, Identification of anisotropic plate rigidities using free vibrationdata, PhD Thesis, Vrije Universiteit, Brussel, Belgium, (1986).

Google Scholar

[3] H. Sol, H. Hua, J. De Visscher, J. Vantomme, W.P. De Wilde: Journal of NDT&E International 30 (2) (1997) pp.85-91.

Google Scholar

[4] L.R. Deobald, R.F. Gibson: Journal of Sound and Vibration 124 (1988), pp.269-283.

Google Scholar

[5] K.E. Fallstrom, M.A. Jonsson: Polymer Composites 12 (1991), pp.293-305.

Google Scholar

[6] C. Maletta, L. Pagnotta: International Journal of Mechanics and Materials in Design 1 (2004) pp.199-211.

Google Scholar

[7] T. Lauwagie, H. Sol, W. Heylen, G. Roebben: Journal of Sound and Vibration (2004), pp.529-546.

Google Scholar

[8] T. Lauwagie, Konstantina Lambrinou, Sophoclis Patsias, Ward Heylen, Jef Vleugels: NDT&E International 41 (2008) pp.88-97.

DOI: 10.1016/j.ndteint.2007.08.007

Google Scholar

[9] Joel Cugnoni , Thomas Gmur , Alain Schorderet: Computer & Structures 85(2007) 1310-1320.

Google Scholar