Synthesis of Nano-Sized Barium Titanate Powder by Rotary-Hydrothermal Process

Article Preview

Abstract:

Nano-sized BaTiO3 powders with narrow size distribution and the high tetragonality were attempted to synthesize by the rotary-hydrothermal process in water system, using two kinds of commercial anatase-type TiO2 (ST21/ST01) with different particle size and Ba(OH)2. The rotary-hydrothermal syntheses were done with the rotary-speed of 20 revolutions per minute at 523 K for 24 h. Highly- and mono-dispersed BaTiO3 powders were successfully synthesized by applying the rotary-hydrothermal process. For rotary-hydrothermal synthesis, it was found that the average size, tetragonality, and quality of the BaTiO3 particle strongly depended on the particle size of the starting material. In the case of using ST01 as a starting material, BaTiO3 nano-powders mainly composed of coarse-faceted particles (average particle size = ca.100 nm) with the tetragonal phase and very little lattice defects were successfully synthesized.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Pages:

269-272

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Bruno and D. K. Swanson, J. Am. Ceram. Soc., 76 (1993), p.1233.

Google Scholar

[2] W. Zhu, S. A. Akbar, R. Asiaie, P. K. Dutta, Jpn. J. Appl. Phys., 36 (1997), p.214.

Google Scholar

[3] A. Beauger, J. C. Mutin, and J. C. Niepce, J. Mater. Sci., 18 (1983), p.3041.

Google Scholar

[4] J. Zeng, C. Lin, J. Li, and K. Li, Mater. Lett., 38 (1999), p.112.

Google Scholar

[5] H. Kumazawa and K. Matsuda, Thin Solid Films, 353 (1999), p.144.

Google Scholar

[6] B. Li, X. Wang, and L. Li, Mater. Chem. Phys., 78 (2002), p.292.

Google Scholar

[7] J. O. Eckert Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, J. Am. Ceram. Soc., 90 (1996), p.311.

Google Scholar

[8] X. Zhu, J. Zhu, S. Zhou, Z. Liu, N. Ming, and D. Hesse, J. Cryst. Growth, 283 (2005), p.553.

Google Scholar

[9] N. Iwaji, R. Tanaka, and M. Kuwabata, Jpn. J. Appl. Phys., 46 (2007), p.402.

Google Scholar

[10] X. Zhu, J. Wang, Z. Zhang, J. Zhu, S. Zhou, Z. Liu, and N. Ming, J. Am. Ceram. Soc., 91 (2008), p.1002.

Google Scholar

[11] J. F. Bocquet, K. Chhor, and C. Pommier, Mater. Chem. Phys., 37 (1999), p.273.

Google Scholar

[12] S. G. Kwon, K. Choi, and B. Kim, Mater. Lett., 60 (2005), p.979.

Google Scholar

[13] W. Sun, C. Li, J. Li, and W. Liu, Mater. Chem. Phys., 97 (2006), p.481.

Google Scholar

[14] T. Yan, X. L. Liu, N. R. Wang, and J. F. Chen, J. Cryst. Growth, 281 (2005), p.669.

Google Scholar

[15] T. Kubo, M. Hogiri, H. Kagata, and A. Nakahira, J. Am. Ceram. Soc., in press. e-mail: kubo-t@mtr. osakafu-u. ac. jp, Fax: +81-72-254-9395 400 600 800 1000 98. 5 99 99. 5 100 Weight loss/ % Temperature/ K ST01 ST21 Fig. 3 SEM images of BaTiO3 powders prepared by static-/ rotary-hydrothermal treatments of the mixture of TiO2 (ST21 or ST01) and Ba(OH)2 at 523 K for 24 h. Fig. 4 TG curves of BaTiO3 powders prepared by rotary-hydrothermal treatments of the mixture of TiO2 (ST21 or ST01) and Ba(OH)2 at 523 K for 24 h.

Google Scholar