Dynamics of Central Peaks in the Brillouin Scattering Spectra of Relaxor Ferroelectrics

Article Preview

Abstract:

High-resolution Brillouin scattering technique was applied to study the dynamics of central peaks (CPs) in two relaxor ferroelectric systems, PLZT-x/65/35 ceramics and PMN-33%PT [001] single crystals, respectively. It was found that CPs appear very close to an intermediate temperature, Td, for both type of specimens. The temperature dependence of CPs was attributed to the appearance and subsequent growth of polar nanoregions (PNRs) intrinsic to relaxor materials.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Pages:

403-406

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[12] single crystals. SUMMARY In summary central peaks in PLZT-x/65/35 ceramics and PMN-33%PT.

Google Scholar

[1] oriented single crystal were studied by the high-resolution Brillouin scattering technique. In PMN-33%PT, the dynamical behavior of CPs was attributed to the presence of PNRs and domain wall movement/alignment. Whereas in PLZT ceramics, CPs resulted from growth and subsequent thermal profile of PNRs. The new intermediate temperature, Td, may be associated to the phenomenon of CPs in relaxor materials. REFERE#CES.

Google Scholar

[1] L. E. Cross, Ferroelectrics, 76 (1987), p.241.

Google Scholar

[2] Z. -G. Ye, Key Eng. Mater., 155-156 (1998), p.81.

Google Scholar

[3] G. Shabbir, J. -H. Ko and S. Kojima, Appl. Phys. Lett., 86 (2005), p.12908.

Google Scholar

[4] E. V. Colla, L. K. Chao and M. B. Weissman, Phys. Rev. B, 63 (2001), p.134107.

Google Scholar

[5] G. Shabbir and S. Kojima, Euro. Phys. Lett., 63 (2003), p.388.

Google Scholar

[6] Z. Kutnjak, J. Petzelt and R. Blinc, Nature, 441 (2006), p.956.

Google Scholar

[7] A. Naberezhnov, S. B. Vakhrushev, B. Dorner and H. Moudden, Eur. Phys. J. B, 11 (1999), p.13.

Google Scholar

[8] P. M. Gehring, S. Wakimoto, Z. -G. Ye and G. Shirane, Phys. Rev. Lett., 87 (2001), p.277601.

Google Scholar

[9] J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C. A. Randall and S. J. Zhang, Phys. Rev. Lett., 91 (2003), p.107602.

DOI: 10.1103/physrevlett.91.107602

Google Scholar

[10] S. Kamba, E. Buixaderas, J. Petzelt, J. Fousek, J. Nosek and P. Bridenbaugh, J. Appl. Phys., 93 (2003), p.933.

Google Scholar

[11] S. N. Gvasaliya, B. Roessli, R. A. Cowley, S. Kojima and S. G. Lushnikov, J. Phys.: Condens. Matter., 19 (2007), p.16219.

Google Scholar

[12] G. Shabbir and S. Kojima, Appl. Phys. Lett., 91 (2007), p.062911.

Google Scholar

[13] F. M. Jiang and S. Kojima, Phys. Rev. B, 62 (2000), p.8572.

Google Scholar

[14] I. G. Siny, S. G. Lushnikov, R. S. Katiyar and E. A. Rogacheva, Phys. Rev. B, 56 (1997), p.7962.

Google Scholar

[15] G. Shabbir, S. Kojima and C. Feng, J. Appl. Phys., 100 (2006), p.064107.

Google Scholar

[16] G. Shabbir and S. Kojima, Ferroelectrics, 303 (2004), p.167.

Google Scholar

[17] G. Shabbir and S. Kojima, J. Phys.: Condens. Matter., 15 (2003), p.7717.

Google Scholar

[18] J. -H. Ko, D. H. Kim and S. Kojima, Phys. Rev. B, 77 (2008), p.104110. ________________________________________ e-mail: gshabbir@gmail. com Fax.: +92-51-2208005.

Google Scholar