Stress-Corrosion Cracking in Unidirectional GFRP Composites

Article Preview

Abstract:

A micromechanical theory of macroscopic stress-corrosion cracking in unidirectional glass fiber-reinforced polymer composites is proposed. It is based on the premise that under tensile loading, the time-dependent failure of the composites is controlled by the initiation and growth of a crack from a pre-existing inherent surface flaw in a glass fiber. A physical model is constructed and an equation is derived for the macroscopic crack growth rate as a function of the apparent crack tip stress intensity factor for mode I. Emphasis is placed on the significance of the size of inherent surface flaw and the existence of matrix crack bridging in the crack wake. There exists a threshold value of the stress intensity factor below which matrix cracking does not occur. For the limiting case, where the glass fiber is free of inherent surface flaws and matrix crack bridging is negligible, the relationship between the macroscopic crack growth rate and the apparent crack tip stress intensity factor is given by a simple power law to the power of two.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-113

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. J. Hogg and D. Hull: Met. Sci. Vol. 14 (1980), p.441.

Google Scholar

[2] B. Noble, S. J. Harris and M. J. Owen: J. Mater. Sci. Vol. 18 (1983), p.1244.

Google Scholar

[3] J. N. Price and D. Hull: J. Mater. Sci. Vol. 18 (1983), p.2798.

Google Scholar

[4] J. N. Price and D. Hull: Compos. Sci. Tech. Vol. 28 (1987), p.193.

Google Scholar

[5] K. Friedrich: J. Mater. Sci. Vol. 16 (1981), p.3292.

Google Scholar

[6] J. Aveston and J. M. Sillwood: J. Mater. Sci. Vol. 17 (1982), p.3941.

Google Scholar

[7] P. -L. Hsu, S. -S. Yau and T. -W. Chou: J. Mater. Sci. Vol. 21 (1986), p.3703.

Google Scholar

[8] H. Sekine and T. Miyanaga: J. Soc. Mater. Sci., Japan Vol. 39 (1990), p.1545.

Google Scholar

[9] H. Sekine and P. W. R. Beaumont: Compos. Sci. Tech. Vol. 58 (1998), p.1659.

Google Scholar

[10] S. M. Wiederhorn and L. H. Bolz: J. Am. Ceram. Soc. Vol. 53 (1970), p.543.

Google Scholar

[11] H. Sekine, N. Hu and H. Fukunaga: Compos. Sci. Tech. Vol. 53 (1995), p.317.

Google Scholar

[12] A. Kiuchi, M. Aoki, M. Kobayashi and K. Ikeda: J. Iron Steel Inst. Japan Vol. 68 (1982), p.1830.

Google Scholar

[13] G. C. Sih, P. C. Paris and G. R. Irwin: Int. J. Fract. Mech. Vol. 1 (1965), p.189.

Google Scholar

[14] J. J. Mecholsky, R. W. Rice and S. W. Freiman: J. Am. Ceram. Soc. Vol. 57 (1974), p.440.

Google Scholar

[15] G. M. Bartenev: Int. J. Fract. Mech. Vol. 5 (1969), p.179 (A. 1) (A. 2) (A. 3) (A. 4).

Google Scholar