Damage Mechanism and Apparent Fracture Strength of Notched Fiber-Reinforced Composite Laminates

Article Preview

Abstract:

Apparent fracture strength of notched fiber-reinforced composite laminates depends on the notch tip radius even if it is evaluated in terms of the local parameters such as the stresses at a notch tip or the stress intensity factors. Although numbers of phenomenological explanations have been made, this phenomenon has not yet been physically clear enough. In order to elucidate its key mechanism, our interest is here focused on the interlaminar crack extension from a notch tip in cross-ply laminates subjected to mode-I loading. We find a stochastically expected upper bound of interlaminar crack length due to the probabilistic breakage process of fibers in load-bearing laminas inside the delaminated zone. This upper bound, i.e., the critical length of interlaminar crack, is inherent to the laminate and corresponds to its notched strength. The well-known variation in apparent fracture strength of notched fiber-reinforced composite laminates with respect to the notch tip radius is clearly explained as the scale effect of this constant critical length in different displacement distributions ahead of notch tips of different radii.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-67

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. Waddopus, J. R. Eisenmann and B. E. Kaminski: J. Compos. Mater. Vol. 5 (1971), p.446.

Google Scholar

[2] J. M. Whiney and R. J. Nuismer: J. Compos. Mater. Vol. 8 (1974), p.253.

Google Scholar

[3] R. B. Pipes, R. C. Wetherhold and J. W. Gillespie, Jr.: J. Compos. Mater. Vol. 13 (1979), p.148.

Google Scholar

[4] S. Ochiai and P. W. R. Peters: J. Mater. Sci. Vol. 17 (1982), p.2324.

Google Scholar

[5] S. C. Tan: J. Compos. Mater. Vol. 22 (1988), p.322.

Google Scholar

[6] K. H. Lo, E. M. Wu and D. Y. Konishi: J. Compos. Mater. Vol. 17 (1983), p.384.

Google Scholar

[7] F. K. Chang and K. Y. Chang: J. Compos. Mater. Vol. 21 (1987), p.834.

Google Scholar

[8] S. C. Tan: J. Compos. Mater. Vol. 25 (1991), p.556.

Google Scholar

[9] H. Hyakutake, T. Hagio and H. Nishitani: Int. J. Pressure Vessels Piping Vol. 44 (1991), p.277.

Google Scholar

[10] J. F. Mandell, S. S. Wang and F. J. McGarry: Air Force Materials Laboratory Technical Report, No. AFML-TR-74-167 (1974).

Google Scholar

[11] A. Hillorborg, M. Modeer and P. E. Peterson: Cement Concrete Research Vol. 6 (1976), p.773.

Google Scholar

[12] L. A. Carlsson, C. G. Aronsson and J. Bäcklund: J. Mater. Sci. Vol. 24 (1989), p.1670.

Google Scholar

[13] M. T. Kortshot and P. W. R. Beaumont: Compos. Sci. Technol. Vol. 39 (1990), p.289, p.303, Vol. 40 (1991), p.147, p.167.

Google Scholar

[14] S. Kamiya and H. Sekine: Compos. Sci. Technol. Vol. 56 (1996), p.11.

Google Scholar

[15] R. Olshansky and R. D. Mauer: J. Appl. Phys. Vol. 47 (1976), p.4497.

Google Scholar

[16] A. E. Green and W. Zerna: Theoretical Elasticity, 2nd ed., Oxford (1968), p.364.

Google Scholar

[17] G. C. Sih and H. Liebowitz: Fracture, Vol. 2, Academic Press (1968), p.99.

Google Scholar