Synthesis of the Gold Nanocubes by Electrochemical Method with Surfactant Solution and Acetone Solvent Addition

Article Preview

Abstract:

Monodispersed gold nanocubes of highly uniform size were fabricated by a simple electrochemical method. The lengths of the edges of the gold nanocubes were about 30 nm. The growth solution was prepared from two cationic surfactant solutions as micelle templates with added acetone solvent. The primary surfactant was hexadecyltrimethylammonium bromide (CTAB) and the co-surfactant was tetradodecylammonium bromide (TTAB).

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

434-437

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Jiang, K. Bosnick, M. Maillard and L. Brus: J. Phys. Chem. B Vol. 107 (2003), p.9964.

Google Scholar

[2] S. Nie and S. R. Emory: Science Vol. 275 (1997), p.1102.

Google Scholar

[3] L. Ao, F. Gao, B. Pan, R. He and D. Cui: Anal. Chem. Vol. 78 (2006), p.1104.

Google Scholar

[4] J. Z. Zhang, A. M. Schwartzberg, J. T. Norman, et al.: Nano Lett. Vol. 5 (2005), p.809.

Google Scholar

[5] J. Matsui, K. Akamatsu, N. Hara, et al.: Anal. Chem. Vol. 77 (2005), p.4282.

Google Scholar

[6] T. Liu, J. Tang, H. Zhao, Y. Deng and L. Jiang: Langmuir Vol. 18 (2002), p.5624.

Google Scholar

[7] A. Yu, Z. Liang, J. Cho and F. Caruso: Nano Lett. Vol. 3 (2003), p.1203.

Google Scholar

[8] C. J. Huang, P. H. Chiu, Y. H. Wang, et al: J. Electrochem. Soc. Vol. 153 (2006), p. D193.

Google Scholar

[9] C. J. Huang, P. H. Chiu, M. D. Chen, et al.: Jpn. J. Appl. Phys. Part 2 Vol. 44 (2005), p. L941.

Google Scholar

[10] C. J. Huang, P. H. Chiu, Y. H. Wang, et al.: J. Colloid Interface Sci. Vol. 306 (2007), p.56.

Google Scholar

[11] C. J. Huang, P. H. Chiu, Y. H. Wang, et al.: Nanotechnology Vol. 18 (2007), p.395603.

Google Scholar

[12] Y. G. Sun and Y. N. Xia: Science Vol. 298 (2002), p.2176.

Google Scholar

[13] F. K. Lin and F. K. Ko: Chem. Lett. Vol. 33 (2004), p.902.

Google Scholar

[14] H. Zhang, C. Shen, S. Chen, Z. Xu, F. Liu, J. Li and H. Gao: Nanotechnology Vol. 16 (2005), p.267.

Google Scholar

[15] H. Zhu, Y. Wang, N. Wang, Y. Li and J. Yang: Mater. Lett. Vol. 58 (2004), p.2631.

Google Scholar

[16] Q. Liu, Y. Ni, G. Yin, J. Hong and Z. Xu: Mater. Chem. Phys. Vol. 89 (2005), p.379.

Google Scholar

[17] K. Yu, Y. Guo, X. Ding, J. Zhao and Z. Wang: Mater. Lett. Vol. 59 (2005), p.4013.

Google Scholar

[18] S. Stankic, M. Müller, O. Diwald, et al.: Angew. Chem., Int. Ed. Vol. 44 (2005), p.4917.

Google Scholar

[19] R. Liu, F. Oba, E. W. Bohannan, F. Ernst and J. A. Switzer: Chem. Mater. Vol. 15 (2003), p.4882.

Google Scholar

[20] W. Lu, J. Fang, Y. Ding and Z. L. Wang: J. Phys. Chem. B Vol. 109 (2005), p.19219.

Google Scholar

[21] Y. Yu, S. Chang, C. Lee and C. R. C. Wang: J. Phys. Chem. B Vol. 101 (1997), p.6661.

Google Scholar

[22] S.S. Chang, C.W. Shih, C.D. Chen, et al.: Langmuir Vol. 15 (1999), p.701.

Google Scholar