Improvement Luminance of Flexible Organic Light-Emitting Diode (FOLED) by Alignment Thickness Rate

Article Preview

Abstract:

In this investigation, the effect of the thickness in the flexible organic light-emitting diode (FOLED) is studied. The larger luminance and luminance efficiency, 1160 cd/m2 and 2.71 lm/W, can be obtained at NPB thickness of 45 nm with the Alq3 thickness of 35 nm. The luminance dramatically rises when the Alq3 thickness is 45 nm at bias voltage of 19 V. The highest luminance is up to 2190 cd/m2. The extreme characteristic of FOLED may be useful to an organic electrically pumped laser.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

438-441

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. B. Deng, X. M. Ding and S. T. Lee: Appl. Phys. Lett. Vol. 74 (1999), p.2227.

Google Scholar

[2] D. F. O'Brien, M. A. Baldo, M. E. Thompson, et al.: Appl. Phys. Lett. Vol. 74 (1999), p.442.

Google Scholar

[3] M. Lkai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga: Appl. Phys. Lett. Vol. 79 (2001), p.156.

Google Scholar

[4] M. Dai, J. Auch, O. K. Soo, G. Ewald and C. S. Jin: Thin Solid Films Vol. 417 (2002), p.47.

Google Scholar

[5] Y. L. Hong and S. J. Chua: Mater. Lett. Vol. 53 (2002), p.227.

Google Scholar

[6] P. E. Burrows, G. Gu, V. Bulovi´c, et al.: IEEE Trans. Electron Devices Vol. 44 (1997), p.1188.

Google Scholar

[7] F. Zhu, K. Zhang, B. L. Low, S. F. Lim and S. J. Chua: Mater. Sci. Eng. B Vol. 85 (2001), p.114.

Google Scholar

[8] Y. He and J. Kanicki: Appl. Phys. Lett. Vol. 76 (2000), p.661.

Google Scholar

[9] F. Zhu, K. Zhang, E. Guenther and C. S. Jin: Thin Solid Films Vol. 363 (2000), p.314.

Google Scholar

[10] C. J. Huang and W. C. Shih: J. Electron. Mater. Vol. 32 (2003), p.478.

Google Scholar

[11] C. J. Huang and W. C. Shih: J. Electron. Mater. Vol. 32 (2003), p.9.

Google Scholar

[12] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn and J. Schwartz: Appl. Phys. Lett. Vol. 87 (2000), p.572.

Google Scholar

[13] D. Ma, C. S. Lee, S. T. Lee and L. S. Hung: Appl. Phys. Lett. Vol. 80 (2002), p.3641.

Google Scholar

[14] Q. T. Le, F. M. Avendano, E. W. Forsythe, et al.: J. Vac. Sci. Technol. A Vol. 17 (1999), p.2314.

Google Scholar

[15] Z. D. Popovic and H. Aziz: IEEE J. Selected Topics in Quantum Electronics Vol. 8 (2002), p.362.

Google Scholar

[16] R. Schlaf, B. A. Parkinson, P. A. Lee, et al.: Appl. Phys. Lett. Vol. 73 (1998), p.1026.

Google Scholar

[17] C. Qiu, H. Chen, M. Wong and H. S. Kwok: IEEE Trans. Electron Devices Vol. 48 (2001), p.2131.

Google Scholar

[18] W. Brűtting, S. Berleb and A. G. Műckl: Synth. Metals. Vol. 122 (2001).

Google Scholar