Preparation of Electroless Ni-Mo Coated TiC Powder

Article Preview

Abstract:

Ni-Mo coated TiC powders were prepared by electroless plating technique assisted by ultrasonic wave with hydrazine as reducing agent. The surface microstructure of the Ni-Mo coated TiC powders was characterized with scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results showed that the as-plated powders, which were of nearly spheric shape, were the composite of TiC and Ni-Mo alloy. The Ni and Mo elements were uniformly distributed around the TiC powders with some plating leakage. In addition, the Ni-Mo plated thin layers on the surface of TiC powders were amorphous or microcrystalline in a supersaturated state. Diffraction peaks corresponding to Ni and Mo weren’t found, and the Ti (NO3)4 and an unknown phase were formed as the load decreased from 15 g/L to 5 g/L.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

522-525

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Ettmayer, H. Kolaska, W. Lengauer, et al.: J. Int. Refract. Met. Hard Mater. Vol. 13 (1995), p.343.

Google Scholar

[2] T. Viatte, S. Bolognini, T. Cutard, et al.: J. Int. Refract. Met. Hard Mater. Vol. 17 (1999) , p.79.

Google Scholar

[3] G. E. D'Errico, S. Bugliosi, D. Cuppini, et al.: J. Wear. Vol. 204 (1997) , p.242.

Google Scholar

[4] S. Bolognini and G. Feusier: J. Int. Refract. Met. Hard Mater. Vol. 16 (1998) , p.257.

Google Scholar

[5] G. Straffelini, D. Colombo and A. Molinari: J. Wear. Vol. 236 (1999), p.179.

Google Scholar

[6] A. Grosjean, M. Rezrazi, U.J. Takadoum, et al.: J. Surf. Coat. Technol. Vol. 130 (2000) , p.252.

Google Scholar

[7] A.A. Khan and J.C. Labble: J. Eur. Ceram. Soc. Vol. 17 (1997) , p.1885.

Google Scholar

[8] S. Vives, C. Guiazard, L. Cot, et al.: J. Mater. Sci. Vol. 34 (1999) , p.3127.

Google Scholar

[9] T. Sekino, T. Nakajima, S. Ueda, et al.: J. Am. Ceram. Soc. Vol. 80 (1997) , p.1139.

Google Scholar

[10] O.H. Sung-Tag, S. Mutsuo and N. Koichi: J. Mater. Sci. Vol. 36 (2001) , p.1817.

Google Scholar

[11] G.Z. Zou, M.S. Cao, H.B. Lin, et al.: J. Powder Technol. Vol. 168 (2006) , p.84.

Google Scholar

[12] H.J. Zhang, X.W. Wu, Q.L. Jia, et al.: J. Mater. Des. Vol. 28 (2007) , p.1369.

Google Scholar

[13] W.B. He, B.L. Zhang , H.R. Zhuang, et al.: J. Ceram. Int. Vol. 31 (2005) , p.811.

Google Scholar

[14] I. -H. Oh, J. -Y. Lee, J.K. Han, et al., Surf. Coat. Technol. Vol. 192 (2005) , p.39.

Google Scholar

[15] G.P. Ling, C. Zhang, J.H. He, Mater.: J. Lett. Vol. 58 (2003) , p.200.

Google Scholar

[16] G. Wen, Z.X. Guo, C.K.L. Davies: J. Scripta mater. Vol. 43 (2000) , p.307.

Google Scholar

[17] D.K. Simpson: J. MetalFinish. Vol. 83 (1985) , p.57.

Google Scholar

[18] B.G. Bagley and D. Turnbull: J. Acta Metall. Vol. 18 (1970) , p.857.

Google Scholar

[19] D.T. Gawne and U. Ma: J. Mater. Sci. Technol. Vol. 3 (1987) , p.228.

Google Scholar

[20] P.H. Lo, W.T. Tsai, J.T. Lee, et al.: J. Scr. Metall. Mater. Vol. 29 (1993) , p.37.

Google Scholar

[21] Y. Azumi, T. Yugirl, T. Kurihara, et al.: J. Electrochem. Soc. Vol. 150 (2003) , p.461.

Google Scholar

[22] P.H. Lo, W.T. Tsai and J.T. Lee: J. Electrochem. Soc. Vol. 137 (1990) , p.1056.

Google Scholar

[23] S.H. Park and D.N. Lee: J. Mater. Sci. Vol. 23 (1988) , p.1643.

Google Scholar