Discrete Differential Evolution Strategy and its Numerical Application

Article Preview

Abstract:

Differential evolution is a simple but powerful parallel global search optimization algorithm, which has been successfully used to solve single-objective optimization problems. In this paper, a novel discrete differential evolution strategy (D2E) is proposed to enhance the ability of solving the numerical optimization problems. D2E adopts the difference information from the binary evolutionary individuals and self-adaptive parameter adjustment to effectively explore the global solution space. The results of numerical simulations demonstrate that the proposed strategy is feasible and efficient, has the better metrics performances.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 439-440)

Pages:

540-545

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Storn R, Price K. Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Optim., 1997, 11(4): 341-359.

Google Scholar

[2] Storn R, Price K. Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Berkeley: University of California, (2006).

Google Scholar

[3] Noman N, Iba H. Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Trans. Evol. Comput., 2008, 12(1): 107-125.

DOI: 10.1109/tevc.2007.895272

Google Scholar

[4] Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-Based Differential Evolution. IEEE Trans. Evol. Comput., 2008, 12(1): 64-79.

DOI: 10.1109/tevc.2007.894200

Google Scholar

[5] Pampara G, Engelbrecht A P, Franken N. Binary Differential Evolution. In: Proc. 2006 IEEE Congr. Evol. Comput. Vancouver, BC, Canada: IEEE Press, 2006: 1873-1879.

DOI: 10.1109/cec.2006.1688535

Google Scholar

[6] He X, Han L. A Novel Binary Differential Evolution Algorithm Based on Artificial Immune System. In: Proc. 2007 IEEE Congr. Evol. Comput. Singapore: IEEE Press, 2007: 2267-2272.

DOI: 10.1109/cec.2007.4424753

Google Scholar

[7] Onwubolu G, Davendra D. Scheduling Flow Shops Using Differential Evolution Algorithm, Eur. J. Oper. Res., 2006, 171(2): 674-692.

DOI: 10.1016/j.ejor.2004.08.043

Google Scholar

[8] Abbass H A and Sarker R. The Pareto Differential Evolution Algorithm, Int. J. Artif. Intel. Tools, 2002, 11(4): 531-552.

DOI: 10.1142/s0218213002001039

Google Scholar

[9] Zamuda A, Brest J, Boskovic B et al. Differential Evolution for Multiobjective Optimization with Self Adaptation. In: Proc. 2007 IEEE Congr. Evol. Comput. Singapore: IEEE Press, 2007: 3617-3624.

DOI: 10.1109/cec.2007.4424941

Google Scholar

[10] Alatas B, Akin E and Karci A. Modenar: Multi-objective Differential Evolution Algorithm for Mining Numeric Association Rules, Appl. Soft Comput., 2008, 8(1): 646-656.

DOI: 10.1016/j.asoc.2007.05.003

Google Scholar

[11] Zitzler E, Deb K, and Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results [J]. Evol. Comput., 2000, 8(2): 173-195.

DOI: 10.1162/106365600568202

Google Scholar

[12] Van Veldhuizen D A, Lamont G B. Evolutionary Computation and Convergence to a Pareto Front, Late Breaking Papers at the Genetic Programming 1998 Conference. California, USA: Stanford University Bookstore, 1998: 221-228.

Google Scholar

[13] Schott J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Master's Thesis. Massachusetts, UK: Massachusetts Institute of Technology, (1995).

Google Scholar

[14] Deb K. NSGA-II. http: /www. iitk. ac. in/kangal/deb. shtml, 2009-10-1.

Google Scholar

[15] Deb K, Pratap A, Agarwal S et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput., 2002, 6(2): 182-197. Table 4 Comparisons of the SP metric of three algorithms for multi-objective test problems Benchmark name SPEA NSGA-II D2E AVE SD AVE SD AVE SD F1 1. 33E-02 1. 89E-03 8. 59E-03 8. 73E-04 4. 49E-03 6. 93E-04 F2 2. 54E-02 6. 59E-03 9. 02E-03 1. 54E-03 4. 10E-03 5. 41E-04 F3 1. 83E-02 1. 00E-02 1. 20E-02 7. 11E-03 6. 29E-03 1. 26E-03 F4 4. 81E-02 8. 00E-02 1. 53E-02 1. 41E-02 4. 19E-03 8. 79E-04.

DOI: 10.1163/36722_meao_israelsmessenger_1906_19060504

Google Scholar