[1]
Storn R, Price K. Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Optim., 1997, 11(4): 341-359.
Google Scholar
[2]
Storn R, Price K. Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Berkeley: University of California, (2006).
Google Scholar
[3]
Noman N, Iba H. Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Trans. Evol. Comput., 2008, 12(1): 107-125.
DOI: 10.1109/tevc.2007.895272
Google Scholar
[4]
Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-Based Differential Evolution. IEEE Trans. Evol. Comput., 2008, 12(1): 64-79.
DOI: 10.1109/tevc.2007.894200
Google Scholar
[5]
Pampara G, Engelbrecht A P, Franken N. Binary Differential Evolution. In: Proc. 2006 IEEE Congr. Evol. Comput. Vancouver, BC, Canada: IEEE Press, 2006: 1873-1879.
DOI: 10.1109/cec.2006.1688535
Google Scholar
[6]
He X, Han L. A Novel Binary Differential Evolution Algorithm Based on Artificial Immune System. In: Proc. 2007 IEEE Congr. Evol. Comput. Singapore: IEEE Press, 2007: 2267-2272.
DOI: 10.1109/cec.2007.4424753
Google Scholar
[7]
Onwubolu G, Davendra D. Scheduling Flow Shops Using Differential Evolution Algorithm, Eur. J. Oper. Res., 2006, 171(2): 674-692.
DOI: 10.1016/j.ejor.2004.08.043
Google Scholar
[8]
Abbass H A and Sarker R. The Pareto Differential Evolution Algorithm, Int. J. Artif. Intel. Tools, 2002, 11(4): 531-552.
DOI: 10.1142/s0218213002001039
Google Scholar
[9]
Zamuda A, Brest J, Boskovic B et al. Differential Evolution for Multiobjective Optimization with Self Adaptation. In: Proc. 2007 IEEE Congr. Evol. Comput. Singapore: IEEE Press, 2007: 3617-3624.
DOI: 10.1109/cec.2007.4424941
Google Scholar
[10]
Alatas B, Akin E and Karci A. Modenar: Multi-objective Differential Evolution Algorithm for Mining Numeric Association Rules, Appl. Soft Comput., 2008, 8(1): 646-656.
DOI: 10.1016/j.asoc.2007.05.003
Google Scholar
[11]
Zitzler E, Deb K, and Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results [J]. Evol. Comput., 2000, 8(2): 173-195.
DOI: 10.1162/106365600568202
Google Scholar
[12]
Van Veldhuizen D A, Lamont G B. Evolutionary Computation and Convergence to a Pareto Front, Late Breaking Papers at the Genetic Programming 1998 Conference. California, USA: Stanford University Bookstore, 1998: 221-228.
Google Scholar
[13]
Schott J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Master's Thesis. Massachusetts, UK: Massachusetts Institute of Technology, (1995).
Google Scholar
[14]
Deb K. NSGA-II. http: /www. iitk. ac. in/kangal/deb. shtml, 2009-10-1.
Google Scholar
[15]
Deb K, Pratap A, Agarwal S et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput., 2002, 6(2): 182-197. Table 4 Comparisons of the SP metric of three algorithms for multi-objective test problems Benchmark name SPEA NSGA-II D2E AVE SD AVE SD AVE SD F1 1. 33E-02 1. 89E-03 8. 59E-03 8. 73E-04 4. 49E-03 6. 93E-04 F2 2. 54E-02 6. 59E-03 9. 02E-03 1. 54E-03 4. 10E-03 5. 41E-04 F3 1. 83E-02 1. 00E-02 1. 20E-02 7. 11E-03 6. 29E-03 1. 26E-03 F4 4. 81E-02 8. 00E-02 1. 53E-02 1. 41E-02 4. 19E-03 8. 79E-04.
DOI: 10.1163/36722_meao_israelsmessenger_1906_19060504
Google Scholar