Dendritic Macromolecules: New Possibilities for Advanced Bioceramics

Article Preview

Abstract:

Dendrimers are a relatively new class of molecules that display a variety of potentially useful architecture-induced properties. In this chapter, we firstly present a general description of this interesting class of macromolecules, making special emphasis in their current biomedical applications. The combination of dendrimers with ceramics, traditionally used in the biomedical field, provides synergistic features and functions to the resulting hybrid materials. After the dendrimers introduction, an overall description of mesoporous silicas, iron oxide nanoparticles and carbon nanotubes bioceramics, is presented. Finally, recent research examples of dendrimer-functionalized ceramics, both from the synthetic and biomedical applicative points of view, are reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-267

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M.J. Fréchet: J. Polym. Sci., Part A: Polym. Chem. Vol. 41 (2003), p.3713.

Google Scholar

[2] Dendrimers and Nanoscience, edited by D. Astruc: C. R. Chimie Vol. 6 (2003), 8-10, special issues.

Google Scholar

[3] Dendrimers and Dendritic Polymers: Design, Properties and Applications, edited by J.P. Majoral: New J. Chem. Vol 31 (2007), 7, special issue.

Google Scholar

[4] S. -E. Stiriba, H. Frey and R. Haag: Angew. Chem. Int. Ed. Vol 41 (2002), p.1329.

Google Scholar

[5] S. Svenson and D.A. Tomalia: Adv. Drug Deliv. Rev. Vol 57 (2005), p.2106.

Google Scholar

[6] R.K. Tekade, P.V. Kumar and N.K. Jain: Chem. Rev. Vol 109 (2009), p.49.

Google Scholar

[7] E. de Jesús and J.C. Flores: Ind. Eng. Chem. Res. Vol 47 (2008), p.7968.

Google Scholar

[8] D. Astruc and F. Chardac: Chem. Rev. Vol. 101 (2001), p.2991.

Google Scholar

[9] B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam and V. Percec: Chem. Rev. Vol. 109 (2009), p.6275.

DOI: 10.1021/cr900157q

Google Scholar

[10] G.R. Newkome, C.N. Moorefield and F. Vögtle: Dendritic Molecules: Concepts Syntheses, and Applications (Wiley-VCH: Weinheim, Germany 1996).

DOI: 10.1002/9783527614875

Google Scholar

[11] A.W. Bosman, H.M. Janssen and E.W. Meijer: Chem. Rev. Vol 99 (1999), p.1665.

Google Scholar

[12] Dendrimers and Dendrons: Concepts, Syntheses, and Perspectives, edited by G.R. Newkome, C.N. Moorefield and F. Vögtle. Wiley-VCH, Weinheim, Germany (2001).

DOI: 10.1002/3527600612

Google Scholar

[13] Dendrimers and Other Dendritic Polymers, edited by J.M.J. Fréchet and D. A Tomalia. Wiley-VCH, New York (2001).

Google Scholar

[14] F. Vögtle, G. Richardt and N. Werner: Dendrimer Chemistry: Concepts, Synthesis, Properties, Applications, Wiley-VCH: Weinheim, Germany (2009).

DOI: 10.1002/9783527626953

Google Scholar

[15] D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith: Polym. J. Vol. 17 (1985), p.117.

DOI: 10.1295/polymj.17.117

Google Scholar

[16] P.J. Flory: J. Am. Chem. Soc. Vol. 63 (1941), p.3083, p.3091, p.3096.

Google Scholar

[17] W.H. Stockmayer: J. Chem. Phys. Vol. 11 (1944), p. (1944).

Google Scholar

[18] E. Buhleier, W. Wehner and F. Vögtle: Synthesis (1978), p.155.

Google Scholar

[19] G.R. Newkome, Z-Q Yao, G.R. Baker and V.K. Gupta: J. Org. Chem. Vol. 50 (1985), p. (2003).

Google Scholar

[20] C.J. Hawker and J.M.J. Frechet: J. Am. Chem. Soc. Vol. 112 (1990), p.7638.

Google Scholar

[21] C.J. Hawker and J.M.J. Fréchet: J. Chem. Soc., Chem. Commun. (1990), p.1010.

Google Scholar

[22] C.J. Hawker and J.M.J. Fréchet: Macromolecules Vol. 23 (1990), p.4726.

Google Scholar

[23] T.M. Miller and T.X. Neenan: Chem. Mater. Vol. 2 (1990), p.346.

Google Scholar

[24] F. Vögtle, S. Gestermann, R. Hesse, H. Schwierz and B. Windisch: Prog. Polym. Sci. Vol. 25 (2000), p.987.

Google Scholar

[25] K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari and H. Fuchs: Angew. Chem. Int. Ed. Vol. 48 (2009), p.872.

DOI: 10.1002/anie.200802585

Google Scholar

[26] P.C. Lauterbour: Nature Vol. 242 (1973), p.190.

Google Scholar

[27] R.B. Laufer: Chem. Rev. Vol. 87 (1987), p.901.

Google Scholar

[28] H. Kobayashi and M.W. Brechbiel: Adv. Drug Deliver. Rev. Vol. 57 (2005), p.2271.

Google Scholar

[29] S. Langereis, A. Dirksen, T.M. Hackeng, M.H.P. Van Genderen and E.W. Meijer: New J. Chem. Vol. 31 (2007), p.1152.

DOI: 10.1039/b616960k

Google Scholar

[30] B. Misselwitz, H. Schmitt-Willich, M. Michaelis and J.J. Oellinger: Invest. Radiol. Vol. 37 (2002), p.146.

Google Scholar

[31] L.H. Bryant Jr., M.W. Brechbiel, C. Wu, J.W.M. Bulte, V. Herynek and J.A. Frank: J. Magn. Reson. Imaging Vol. 9 (1999), p.348.

Google Scholar

[32] H. Xu, C.A.S. Regino, M. Bernardo, Y. Koyama, H. Kobayashi, P.L. Choyke and M.W. Brechbiel: J. Med. Chem. Vol. 50 (2007), p.3185.

Google Scholar

[33] S. Langereis, Q.G. de Lussanet, M.H.P. van Genderen, W.H. Backes and E.W. Meijer: Macromolecules Vol. 37 (2004), p.3084.

Google Scholar

[34] S.D. Swanson, J.F. Kukowska-Latallo, A.K. Patri, C. Chen, S. Ge, Z. Cao, A. Kotlyar, A.T. East and J.R. Baker: Int. J. Nanomedicine Vol. 3 (2008), p.201.

Google Scholar

[35] A.U. Bielinska, C. Chen, J. Johnson and J.R. Baker, Jr: Bioconjugate Chem. Vol. 10 (1999), p.843.

Google Scholar

[36] J.D. Eichman, A.U. Bielinska, J.F. Kukowska-Latallo and J.R. Baker Jr: Pharm. Sci. Technol. Today Vol. 3 (2000), p.232.

Google Scholar

[37] B.H. Zinselmeyer, S.P. Mackay, A.G. Schatzlein and I.F. Uchegbu: Pharm. Res. Vol. 19 (2002), p.960.

Google Scholar

[38] M.A. Mintzer and E.E. Simanek: Chem. Rev. Vol. 109 (2009), p.259.

Google Scholar

[39] J.F.G.A. Jansen, E.M.M. de Brabander-van den Berg and E.W. Meijer: Science Vol. 266 (1994), p.1226.

Google Scholar

[40] E.R. Gillies and J.M.J. Fréchet: Drug Discovery Today Vol. 10 (2005), p.35.

Google Scholar

[41] S.H. Medina and M.E.H. El-Sayed: Chem. Rev. Vol. 109 (2009), p.3141.

Google Scholar

[42] U. Gupta, H.B. Agashe, A. Asthana and N.K. Jain: Biomacromolecules Vol. 7 (2006), p.649.

Google Scholar

[43] R.F. Barfh, A.H. Soloway, R.G. Fairchild and R.M. Brugger: Cancer Vol. 70 (1992), p.2995.

Google Scholar

[44] T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q Peng: J. Natl. Cancer Inst. Vol. 90 (1998), p.889.

DOI: 10.1093/jnci/90.12.889

Google Scholar

[45] M.W. Grinstaff: Chem. Eur. J. Vol. 8 (2002), p.2839.

Google Scholar

[46] L. Degoricija, C. S. Johnson, M. Wathier, T. Kim and M.W. Grinstaff: Invest. Ophthalmol. Vis. Sci. Vol. 48 (2007), p. (2037).

DOI: 10.1167/iovs.06-0957

Google Scholar

[47] T.M. Allen: Nature Reviews: Cancer Vol. 2 (2002), p.750.

Google Scholar

[48] P.S. Low, W.A. Henne and D.D. Doorneweerd: Acc. Chem. Res. Vol. 41 (2008), p.120.

Google Scholar

[49] I.J. Majoros, A. Myc, T. Thomas, C.B. Mehta and J.R. Baker, Jr: Biomacromolecules Vol. 7 (2006), p.572.

Google Scholar

[50] I.J. Majoros, C.R. Williams, A. Becker and J.R. Baker, Jr: WIREs Nanomedicine and Nanobiotechnology Vol. 1 (2009), p.502.

Google Scholar

[51] M. Vallet-Regí: Key Eng. Mater. Vol. 377 (2008), p.1.

Google Scholar

[52] M. Vallet-Regí: Dalton Trans. (2006), p.5211.

Google Scholar

[53] M. Vallet-Regí and A.J. Salinas: Ceramics as bone repair materials. In: Bone repair biomaterials, edited by J.A. Planell, chapter 7, Woodhead Publishing Limited and CRC Press LLC, 2009, p.194.

DOI: 10.1533/9781845696610.2.194

Google Scholar

[54] A.L. Martin, B. Li and E.R. Gillies: J. Am. Chem. Soc. Vol. 131 (2009), p.734.

Google Scholar

[55] T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato: Bull. Chem. Soc. Jpn. Vol. 63 (1990), p.988.

Google Scholar

[56] S. Inagaki, Y. Fukushima and K. Kuroda: Chem. Commun. Vol. 8 (1993), p.680.

Google Scholar

[57] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: Nature Vol. 359 (1992), p.710.

Google Scholar

[58] Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schüth and G.D. Stucky: Chem. Mater. Vol. 6 (1994), p.1176.

DOI: 10.1021/cm00044a016

Google Scholar

[59] J.Y. Ying, C.P. Mehnert and M.S. Wong: Angew. Chem. Int. Ed. Vol. 38 (1999), p.56.

Google Scholar

[60] G.J.A.A. Soler-Illia, C. Sánchez, B. Lebeau and J. Patarin: Chem. Rev. Vol. 102 (2002), p.4093.

Google Scholar

[61] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky: Science: Science Vol. 279 (1998), p.548.

DOI: 10.1126/science.279.5350.548

Google Scholar

[62] Y. Sakamoto, T.W. Kim, R. Ryoo and O. Terasaki: Angew. Chem. Int. Ed. Vol. 43 (2004), p.5231.

Google Scholar

[63] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S. B McCullen, J.B. Higgings and J.L. Schelenker: J. Am. Chem. Soc. Vol. 114 (1992), p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[64] A. Firouzi, F. Atef, A.G. Oertli, G.D. Stucky and B.F. Chmelka: J. Am. Chem. Soc. Vol. 119 (1997), p.3596.

DOI: 10.1021/ja963007i

Google Scholar

[65] J. Zhang, Z. Luz and D. Goldfarb: J. Phys. Chem. B. Vol. 101 (1997), p.7087.

Google Scholar

[66] M. Kruk, M. Jaroniec and A. Sayari: J. Phys. Chem. B. Vol. 103 (1999), p.4590.

Google Scholar

[67] M. Kaneda, T. Tsubakiyawa, A. Carlsson, Y. Sakamoto, T. Oshuna, O. Terasaki, H. Joo and R. Ryoo: J. Phys. Chem. B Vol. 106 (2002), p.1256.

Google Scholar

[68] P.I. Ravikovitch and A.V. Neimark: Langmuir Vol. 18 (2002), p.9830.

Google Scholar

[69] P.I. Ravikovitch and A.V. Neimark: Langmuir Vol. 18 (2002), p.1550.

Google Scholar

[70] S.A. Bagshaw, E. Prouzet and T. Pinnavaia: Science Vol. 269 (1995), p.1242.

Google Scholar

[71] R. Ryoo, J.M. Kim, C.H. Ko and C.H. Shin: J. Phys. Chem. B. Vol. 100 (1996), p.17718.

Google Scholar

[72] S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima and K. Kuroda: Bull. Chem. Soc. Jpn. Vol. 69 (1996), p.1449.

Google Scholar

[73] C. Yu, Y. Yu and D.Y. Zhao: Chem. Commun. (2000), p.575.

Google Scholar

[74] J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao: Angew. Chem. Int. Ed. Vol. 42 (2003), p.3146.

Google Scholar

[75] Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu and D.Y. Zhao: Angew. Chem. Int. Ed. Vol. 44 (2005), p.7053.

Google Scholar

[76] S. Che, K. Lund, T. Tatsumi, S. Iijima, S.H. Joo, R. Ryoo and O. Terasaki: Angew. Chem. Int. Ed. Vol. 49 (2003), p.2182.

DOI: 10.1002/ange.200250726

Google Scholar

[77] F. Hoffmann, M. Cornelius, J. Morell and M. Fröba: Angew. Chem. Int. Ed. Vol. 45 (2006), p.3216.

Google Scholar

[78] B.J. Scott, G. Wirnsberger and G.D. Stucky: Chem. Mater. Vol. 13 (2001), p.3140.

Google Scholar

[79] A. Taguchi and F. Schüth: Micropor. Mesopor. Mater. Vol. 77 (2005), p.1.

Google Scholar

[80] M. Gruen, I. Lauer, K.K. Unger: Adv. Mater. Vol. 9 (1997), p.254.

Google Scholar

[81] M. Vallet-Regí: Chem. Eur. J. Vol. 12 (2006), p.5934.

Google Scholar

[82] M. Vallet-Regí: Chem. Eng. J. Vol. 137 (2008), p.1.

Google Scholar

[83] M. Vallet-Regí, F. Balas and D. Arcos: Angew. Chem. Int. Ed. Vol. 46 (2007), p.7548.

DOI: 10.1002/anie.200604488

Google Scholar

[84] I.I. Slowing, B.G. Trewyn, S. Giri and V.S. -Y. Lin: Adv. Funct. Mater. Vol. 17 (2007), p.1225.

Google Scholar

[85] B.G. Trewyn, S. Giri, I.I. Slowing and V.S. -Y. Lin: Chem. Commun. (2007), p.3236.

Google Scholar

[86] M. Colilla, I. Izquierdo-Barba and M. Vallet-Regí: Expert Opin. Ther. Patents Vol. 18 (2008), p.639.

DOI: 10.1517/13543776.18.6.639

Google Scholar

[87] M. Colilla, M. Manzano and M. Vallet-Regí: Int. J. Nanomed. Vol. 3 (2008), p.403.

Google Scholar

[88] M. Colilla and M. Vallet-Regí: Novel Insights into Ordered Mesoporous Materials for Biomedical Applications. In Bioceramics: Properties, Preparations and Applications, edited by W. Kossler and J. Fuchs, chapter 3, Nova Science Publishers, Inc. (2009).

Google Scholar

[89] I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu and V.S. -Y. Lin: Adv. Drug Deliver. Rev. Vol. 60 (2008), p.1278.

Google Scholar

[90] S. Wang: Microporous Mesoporous Mater. Vol. 117 (2009), p.1.

Google Scholar

[91] M. Manzano, M. Colilla and M. Vallet-Regí: Expert Opin. Drug Deliver. Vol. 6 (2009), p.1363.

Google Scholar

[92] M. Vallet-Regí; J. Intern. Med. Vol. 267 (2010), p.22.

Google Scholar

[93] M. Manzano, V. Aina, C.O. Areán, F. Balas, V. Cauda, M. Colilla, M.R. Delgado and M. Vallet-Regí: Chem. Eng. J. Vol. 137 (2008), p.31.

DOI: 10.1016/j.cej.2007.07.078

Google Scholar

[94] F. Balas, M. Manzano, P. Horcajada and M. Vallet-Regí: J. Am. Chem. Soc. Vol. 128 (2006), p.8116.

Google Scholar

[95] A. Nieto, F. Balas, M. Colilla, M. Manzano and M. Vallet-Regí: Microporous Mesoporous Mater. Vol. 116 (2008), p.4.

DOI: 10.1016/j.micromeso.2008.03.025

Google Scholar

[96] S.W. Song, K. Hidajat and S. Kawi: Langmuir Vol. 21 (2005) p.9568.

Google Scholar

[97] M. Vallet-Regí, F. Balas, M. Colilla and M. Manzano: Prog. Solid State Chem. Vol. 36 (2008), p.163.

DOI: 10.1016/j.progsolidstchem.2007.10.002

Google Scholar

[98] B. González, M. Colilla, C. López de Laorden and M. Vallet-Regí: J. Mater. Chem. Vol. 19 (2009), p.9012.

Google Scholar

[99] D.R. Radu, C. -Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija and V.S. -Y. Lin: J. Am. Chem. Soc. Vol. 126 (2004), p.13216.

DOI: 10.1021/ja046275m

Google Scholar

[100] I. Slowing, B.G. Trewyn, V.S.Y. Lin: J. Am. Chem. Soc. Vol. 128 (2006), p.14792.

Google Scholar

[101] M. Vallet-Regí, A. Rámila, R.P. del Real and J.P. Pérez-Pariente: Chem. Mater. Vol. 13 (2001), p.308.

Google Scholar

[102] B. Muñoz, A. Rámila, J. Pérez-Pariente, I. Díaz and M. Vallet-Regí: Chem. Mater. Vol. 15 (2003), p.500.

DOI: 10.1021/cm021217q

Google Scholar

[103] I. Izquierdo-Barba, A. Martínez, A.L. Doadrio, J. Pérez-Pariente and M. Vallet-Regí: Eur. J. Pharm. Sci. Vol. 26 (2005), p.365.

Google Scholar

[104] Q.L. Tang, Y. Xu, D. Wu and Y.H. Sun: Chem. Lett. Vol. 35 (2006), p.474.

Google Scholar

[105] V. Cauda, S. Fiorilli, B. Onida, E. Verné, C. Vitale-Brovarone, D. Viterbo, G. Croce, M. Milanesio and E. Garrone: J. Mater. Sci.: Mater. Med. Vol. 19 (2008), p.3303.

DOI: 10.1007/s10856-008-3468-4

Google Scholar

[106] I. Izquierdo-Barba, E. Sousa, J.C. Doadrio, A.L. Doadrio, J. Pérez Pariente, A. Martínez, F. Babonneau and M. Vallet-Regí: J. Sol-Gel Sci. Technol. Vol. 50 (2009), p.421.

DOI: 10.1007/s10971-009-1932-3

Google Scholar

[107] G. Cavallaro, P. Pierro, F.S. Palumbo, F. Testa, L. Pasqua and R. Aiello: Drug Delivery Vol. 11 (2004), p.41.

DOI: 10.1080/10717540490265252

Google Scholar

[108] W. Zeng, X.F. Qian, Y.B. Zhang, J. Yin and Z.K. Zhu: Mater. Res. Bull. Vol. 40 (2005), p.766.

Google Scholar

[109] V. Ambrogi, L. Perioli, F. Marmottini, S. Giovagnoli, M. Esposito and C. Rossi: Eur. J. Pharm. Sci. Vol. 32 (2007), p.216.

Google Scholar

[110] J.M. Xue and M. Shi: J. Control. Release Vol. 98 (2004), p.209.

Google Scholar

[111] A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J. Pérez-Pariente, I. Izquierdo-Barba and M. Vallet-Regí: J. Control Release, Vol. 97 (2004), p.125.

DOI: 10.1016/j.jconrel.2004.03.005

Google Scholar

[112] M. Vallet-Regí, J.C. Doadrio, A.L. Doadrio, I. Izquierdo-Barba and J. Pérez-Pariente: Solid State Ionics Vol. 172 (2004), p.435.

DOI: 10.1016/j.jconrel.2004.03.005

Google Scholar

[113] J.C. Doadrio, E.M.B. Sousa, I. Izquierdo-Barba, A.L. Doadrio, J. Pérez-Pariente and M. Vallet-Regí: J. Mater. Chem. Vol. 16 (2006) p.462.

DOI: 10.1039/b510101h

Google Scholar

[114] Q. Yang, S.H. Wang, P.W. Fan, L.F. Wang, Y. Di, K.F. Lin and F.S. Xiao: Chem. Mater. Vol. 17 (2005), p.5999.

Google Scholar

[115] F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang and S. Qui: Microporous Mesoporous Mater. Vol. 92, (2006) p.1.

Google Scholar

[116] H. Yu and Q. -Z. Zhai: Microporous Mesoporous Mater. Vol. 123 (2009), p.298.

Google Scholar

[117] R. Mellaerts, R. Mols, J.A.G. Jammaer, C.A. Aerts, P. Annaert, J. Van Humbeeck, G. Van den Mooter, P. Augustijns and J.A. Martens: Eur. J. Pharm. Biopharm. Vol. 69 (2008), p.223.

DOI: 10.1016/j.ejpb.2007.11.006

Google Scholar

[118] I.S. Carino, L. Pasqua, F. Testa, R. Aiello, F. Puoci, F. Iemma and N. Picci: Drug Delivery Vol. 14 (2007), p.491.

DOI: 10.1080/10717540701606244

Google Scholar

[119] L. Pasqua, F. Testa, R. Aiello, S. Cundari and J.B. Nagy: Microporous Mesoporous Mater. Vol. 103 (2007), p.166.

DOI: 10.1016/j.micromeso.2007.01.045

Google Scholar

[120] C. Tourne-Peteilh, D.A. Lerner, C. Charnay, L. Nicole, S. Begu and J.M. Devoisselle: Vol. 4 (2003), p.281.

Google Scholar

[121] C.B. Gao, I. Izquierdo-Barba, I. Nakase, S. Futaki, J.F. Ruan, K. Sakamoto, Y. Sakamoto, K. Kuroda, O. Terasaki and S. Che: Microporous Mesoporous Mater. Vol. 122 (2009), p.201.

DOI: 10.1016/j.micromeso.2009.03.002

Google Scholar

[122] D. Lozano, M. Manzano, J.C. Doadrio, A.J. Salinas, M. Vallet-Regí, E. Gómez-Barrena and P. Esbrit: Acta Biomater. (2009) doi: 10. 1016/j. actbio. 2009. 08. 033.

DOI: 10.1016/j.actbio.2009.08.033

Google Scholar

[123] F. Balas, M. Manzano, M. Colilla and M. Vallet-Regí: Acta Biomater. Vol. 4 (2007), p.514.

Google Scholar

[124] I. Izquierdo-Barba, L. Ruiz-González, J.C. Doadrio, J.M. González-Calbet and M. ValletRegí: Solid State Sci. Vol. 7 (2005), p.983.

DOI: 10.1016/j.solidstatesciences.2005.04.003

Google Scholar

[125] M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba and J.M. González-Calbet: J. Mater. Chem. Vol. 16 (2006), p.26.

DOI: 10.1039/b509744d

Google Scholar

[126] I. Izquierdo-Barba, M. Manzano, M. Colilla and M. Vallet-Regí: Key Eng. Mater. Vol. 377 (2008), p.133.

DOI: 10.4028/www.scientific.net/kem.377.133

Google Scholar

[127] I. Izquierdo-Barba, M. Colilla and M. Vallet-Regí: J. Nanomater. (2008) Article ID 106970, 14 pages.

Google Scholar

[128] M. Vallet-Regí, M. Colilla and I. Izquierdo-Barba: J. Biomed. Nanotechnol. Vol. 4 (2008), p.1.

Google Scholar

[129] H.H.P. Yiu, C.H. Botting, N.P. Botting, P.A. Wright: Phys. Chem. Hem. Phys. Vol. 3 (2001), p.2983.

Google Scholar

[130] M.F. Ottaviani, N.J. Turro, S. Jockusch and D.A. Tomalia: J. Phys. Chem. B Vol. 107 (2003), p. (2046).

Google Scholar

[131] I. Díaz, B. García, B. Alonso, C.M. Casado, M. Morán, J. Losada and J. Pérez-Pariente: Chem. Mater. Vol. 15 (2003), p.1073.

DOI: 10.1021/cm0203565

Google Scholar

[132] Y. -M. Chung and H. -K. Rhee: Catal. Lett. Vol. 82 (2002), p.249.

Google Scholar

[133] C. Wang, G. Zhu, J. Li, X. Cai, Y. Wei, D. Zhang and S. Qiu: Chem. -Eur. J. Vol. 11 (2005), p.4975.

Google Scholar

[134] Y. Jiang and Q. Gao: J. Am. Chem. Soc. Vol. 128 (2006), p.716.

Google Scholar

[135] Y. Jiang, Q. Gao, H. Yu, Y. Chen and F. Deng: Microporous Mesoporous Mater. Vol. 103 (2007), p.316.

Google Scholar

[136] J.P.K. Reynhardt, Y. Yang, A. Sayari and H. Alper: Chem. Mater. Vol. 16 (2004), p.4095.

Google Scholar

[137] M.P. Kapoor, H. Kuroda, M. Yanagi, H. Nanbu and L.R. Juneja: Top. Catal. Vol 52 (2004), p.634.

Google Scholar

[138] J.P.K. Reynhardt, Y. Yang, A. Sayari and H. Alper: Adv. Funct. Mater. Vol. 15 (2005), p.1641.

Google Scholar

[139] D.A. Tomalia, A.M. Naylor and W.A. Goddard III: Angew. Chem. Int. Ed. Engl. Vol. 29 (1990), p.138.

Google Scholar

[140] J. Bu, R. Li, C.W. Quah and K.J. Carpenter: Macromolecules Vol. 37 (2004), p.6687.

Google Scholar

[141] Y. Kaneko, N. Iyi, T. Matsumoto, K. Fuji, K. Kurashima and T. Fujita: J. Mater. Chem. Vol. 13 (2003) , p. (2058).

Google Scholar

[142] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro: J. Biomed. Mater. Res. Vol. 24 (1990), p.721.

DOI: 10.1002/jbm.820240607

Google Scholar

[143] T. Kokubo and H. Takadama: Biomaterials Vol. 27 (2006), p.2907.

Google Scholar

[144] T. Higuchi: J. Pharm. Sci. Vol. 52 (1963), p.1145.

Google Scholar

[145] Q. Huo, J. Feng, F. Schueth and G.D. Stucky: Chem. Mater. Vol. 9 (1997), p.254.

Google Scholar

[146] L. Qi, J. Ma, H. Cheng and Z. Zhao: Chem. Mater. Vol. 10 (1998), p.1623.

Google Scholar

[147] W. Stöber, A. Fink and E. Bohn: J. Colloid Interface Sci. Vol. 26 (1968), p.62.

Google Scholar

[148] Y.F. Lu, H.Y. Fan, A. Stump, T.L. Ward, T. Rieker and C.J. Brinker: Nature Vol. 398 (1999), p.223.

Google Scholar

[149] C.J. Brinker, Y.F. Lu, A. Sellinger and H.Y. Fan: Adv. Mater. Vol. 11 (1999), p.579.

Google Scholar

[150] E. Ruiz-Hernández, A. López-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet- Regí: Chem. Mater. Vol. 19 (2007), p.3455.

DOI: 10.1021/cm0705789

Google Scholar

[151] X. Li, L.X. Zhang, X.P. Dong, J. Liang and J.L. Shi: Microporous Mesoporous Mater. Vol. 102 (2007), p.151.

Google Scholar

[152] D. Arcos, A. López-Noriega and E. Ruíz-Hernández: Chem. Mat. Vol. 21 (2009), p.1000.

Google Scholar

[153] Y.F. Zhu, J.L. Shi, H.R. Chen, W.H. Shen and X.P. Dong: Microporous Mesoporous Mater. Vol. 84 (2005), p.218.

Google Scholar

[154] C. -Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V.S. -Y. Lin: J. Am. Chem. Soc. Vol. 121 (2003), p.4451.

DOI: 10.1021/ja028650l

Google Scholar

[155] S. Giri, B.G. Trewyn, M.P. Stellmaker and V.S. -Y. Lin: Angew. Chem. Int. Ed. Vol. 44 (2005), p.5038.

Google Scholar

[156] K.K. Cotí, M.E. Belowich, M. Liong, M.W. Ambrogio, Y.A. Lau, H.A. Khatib, J.I. Zink, N.M. Khashab and J.F. Stoddart: Nanoscale Vol. 1 (2009), p.16.

DOI: 10.1039/b9nr00162j

Google Scholar

[157] V.Y. -S. Lin, C. -P. Tsai, H. -Y. Huang, C. -T. Kuo, Y. Hung, D. -M. Huang, Y. -C. Chen and C. -Y. Mou: Chem. Mater. Vol. 17 (2005), p.4570.

Google Scholar

[158] J. Lu, M. Liong, J.I. Zin and F. Tamanoi: Small Vol. 3 (2007), p.1341.

Google Scholar

[159] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi and J.I. Zink: ACS Nano Vol. 2 (2008), p.889.

DOI: 10.1021/nn800072t

Google Scholar

[160] J. Liu, X. Jiang, C. Ashley and C.J. Brinker: J. Am. Chem. Soc. Vol. 131 (2009), p.7567.

Google Scholar

[161] J.M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J.E. Eriksson, C. Sahlgren and M. Lindén: ACS Nano Vol. 3 (2009), p.197.

DOI: 10.1021/nn800781r

Google Scholar

[162] J.M. Rosenholm, A. Penninkangas and M. Lindén: Chem. Commun. (2006), p.3909.

Google Scholar

[163] P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. González-Carreño and C.J. Serna: J. Phys. D: Appl. Phys. Vol. 36 (2003), p. R182.

Google Scholar

[164] A.K. Gupta and M. Gupta: Biomaterials Vol. 26 (2005), p.3995.

Google Scholar

[165] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller: Chem. Rev. Vol. 108 (2008), p. (2064).

DOI: 10.1021/cr068445e

Google Scholar

[166] A.G. Roca, R. Costo, A.F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. GonzálezCarreño, M.P. Morales and C.J. Serna: J. Phys. D: Appl. Phys. Vol. 42 (2009), 224002.

DOI: 10.1088/0022-3727/42/22/224002

Google Scholar

[167] R.M. Cornell and U. Schwertmann: The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses, Wiley VCH, Weinheim, Germany (2003).

Google Scholar

[168] C. Khemtong, C.W. Kessinger and J. Gao: Chem. Commun. Vol. 2009, p.3497.

Google Scholar

[169] F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher and C. Plank: Gene Therapy Vol. 9 (2002), p.102.

DOI: 10.1038/sj.gt.3301624

Google Scholar

[170] S.H. Wang, X. Shi, M. Van Antwerp, Z. Cao, S.D. Swanson, X. Bi and J.R. Baker Jr.: Adv. Func. Mater. Vol. 17 (2007), p.3043.

Google Scholar

[171] X. Shi, S.H. Wang, S.D. Swanson, S. Ge, Z. Cao, M.E. Van Antwerp, K.J. Landmark and J.R. Baker Jr.: Adv. Mater. Vol. 20 (2008), p.1671.

Google Scholar

[172] G. Decher: Science Vol. 277 (1997), p.1232.

Google Scholar

[173] D.I. Gittins and F. Caruso: Adv. Mater. Vol. 12 (2000), p. (1947).

Google Scholar

[174] A.F. Thünemann, D. Schütt, L. Kaufner, U. Pison and H. Möhwald: Langmuir Vol. 22 (2006), p.2351.

Google Scholar

[175] R. Bacon: J. Appl. Phys. Vol. 31 (1960), p.283.

Google Scholar

[176] L. Yuan, K. Saito, C. Panb, F.A. Williams and A.S. Gordon: Chem. Phys. Lett. Vol. 340 (2001), p.237.

Google Scholar

[177] L. Yuan, K. Saito, W. Hu and Z. Chen: Chem. Phys. Lett. Vol. 346 (2001), p.23.

Google Scholar

[178] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[179] T.W. Ebbesen and P.M. Ajayan: Nature Vol. 358 (1992), p.220.

Google Scholar

[180] T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert and R.E. Smalley: J. Phys. Chem. Vol. 95 (1999), p.10694.

Google Scholar

[181] M. José-Yacamán, M. Miki-Yoshida, L. Rendón and J. G. Santiesteban: Appl. Phys. Lett. Vol. 62 (1993), p.657.

DOI: 10.1063/1.108857

Google Scholar

[182] P.L. Walker, J.F. Rakszawski and G.R. Imperial: J. Phys. Chem. Vol. 63 (1959), p.133.

Google Scholar

[183] A. Oberlin and M. Endo: J. Crystal Growth Vol. 32 (1976), p.335.

Google Scholar

[184] S. Iijima and T. Ichihashi: Nature Vol. 363 (1993), p.603.

Google Scholar

[185] D.S. Bethune, C.H. Klang, M.S. d. Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers: Nature Vol. 363 (1993), p.605.

Google Scholar

[186] D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato: Chem. Rev. Vol. 106 (2006), p.1105.

Google Scholar

[187] Y. Yang, H. Zou, Q.L. Bin Wu, J. Zhang, Z. Liu, X. Guo and Z. Du: J. Phys. Chem. B Vol. 106 (2002), p.7160.

Google Scholar

[188] X. Lu and T. Imae: J. Phys. Chem. C Vol. 111 (2007), p.2416.

Google Scholar

[189] B.Z. Hui Hu, M.A. Hamon, K. Kamaras, M.E. Itkis and R.C. Haddon: J. Am. Chem. Soc. Vol. 125 (2003), p.14893.

Google Scholar

[190] M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes and A. Hirsch: J. Am. Chem. Soc. Vol. 125 (2003), p.8566.

DOI: 10.1021/ja029931w

Google Scholar

[191] N. Tagmatarchis and M. Prato: J. Mater. Chem. Vol. 14 (2004), p.437.

Google Scholar

[192] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S. -W. Chung, H. Choi and J.R. Heath: Angew. Chem. Int. Ed. Vol. 40 (2001), p.1721.

DOI: 10.1002/1521-3773(20010504)40:9<1721::aid-anie17210>3.0.co;2-f

Google Scholar

[193] C. Richard, F. Balavoine, P. Schultz, T.W. Ebbesen and C. Mioskowski:. Science Vol. 300 (2003), p.775.

Google Scholar

[194] H. Hu, Y. Ni, V. Montana, R.C. Haddon and V. Parpura: Nano Letters Vol. 4 (2004), p.507.

Google Scholar

[195] J.L. McKenzie, M.C. Waid, R. Shi and T.J. Webster: Biomaterials Vol. 25 (2004), p.1309.

Google Scholar

[196] K.A. Williams, P.T.M. Veenhuizen, B.G. d. l. Torre, R. Eritja and C. Dekker: Nature Vol. 420 (2002), p.761.

Google Scholar

[197] J. Wang, G. Liu, M.R. Jan: J. Am. Chem. Soc. Vol. 126 (2004), p.3010.

Google Scholar

[198] X. Shi, S.H. Wang, M. Shen, M.E. Antwerp, X. Chen, C. Li, E.J. Petersen, Q. Huang, J.W.J. Weber and J.R. Baker Jr.: Biomacromolecules Vol. 10 (2009), p.1744.

Google Scholar