Nanostructured Solar Cells

Article Preview

Abstract:

Novel types of solar cells based on nanostructured materials are intensively studied because of their prospective applications and interesting new working principle – essentially due to the nanomaterials used They have evolved from dye sensitized solar cells (DSSC) in the quest to improve their behavior and characteristics. Their nanocrystals (ca. 10-50 nm) do not generally show the confinement effect present in quantum dots of size ca. 1-10nm where electron wave functions are strongly confined originating changes in the band structure. Nonetheless, the nanocrystalline character of the semiconductor used determines a different working principle; which is explained, although it is not completely clear so far,. Different solid nanostructured solar cells are briefly reviewed together with research trends. Finally, the influence of the photoelectrode electron-extracting contact is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-254

Citation:

Online since:

July 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 7-22.

DOI: 10.1080/01944363.2014.954464

Google Scholar

[2] International Energy Agency, World Energy Outlook 2005, November 2005, page 132.

Google Scholar

[3] BP Statistical Review of World Energy, June 2009, http: /www. bp. com/statistical review.

Google Scholar

[4] R. L. Hirsch, Peaking of World Oil Production: Recent Forecasts. DOE NETL-2007/1263, February (2007).

Google Scholar

[5] Report #: DOE/EIA-0484(2009), May (2009).

Google Scholar

[6] IEA Energy Technology R&D Statistics Service, 2007, http: /www. iea. org/stats/rd. asp.

Google Scholar

[7] W. Hoffmann: Solar Energy Materials & Solar Cells Vol. 90 (2006), p.3285.

Google Scholar

[8] Set for 2020 - Solar Photovoltaic Electricity: A mainstream power source in Europe by 2020- Executive Summary, European Photovoltaic Industry Association (EPIA), 2009, www. setfor2020. eu.

Google Scholar

[9] D.M. Chapin, C. S. Fuller, G. L. Pearson: J. Appl. Phys. Vol. 25 (1954), p.676.

Google Scholar

[10] V. Petrova-Koch in: High-Efficient Low-Cost Photovoltaics Recent Developments, p.1, edited by Vesselinka Petrova-Koch, Rudolf Hezel, Adolf Goetzberger, Springer (2008).

DOI: 10.1007/978-3-540-79359-5

Google Scholar

[11] a. Zh. I. Alfërov, V. M. Andreev, N. S. Zimogorova, D. N. Tret'yakov: Fiz. Tekhn. Poluprovodn. Vol. 3 (1969).

Google Scholar

[12] Zh.I. Alferov, V.M. Andreev, Kh.K. Aripov, V.R. Larionov, V.D. Rumyantsev: Geliotechnika No 6 (1981), p.3. Translated into English in: Applied Solar Energy No 6 (1981).

Google Scholar

[13] D. Cusano: Solid State Electron. Vol. 6 (1963), p.217.

Google Scholar

[14] S. S. Hegedus, A. Luque in: Handbook of Photovoltaic Science and Engineering, p.1, edited by A. Luque and S. Hegedus, John Wiley & Sons, Ltd (2003).

DOI: 10.1002/0470014008

Google Scholar

[15] B. O'Regan, M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[16] M. Grätzel: Prog. Photovolt. Vol 8 (2000), p.171.

Google Scholar

[17] A. Feltrin, A. Freundlich: Renewable Energy Vol. 33 (2008), p.180.

Google Scholar

[18] W. Hoffmann: Solar Energy Materials & Solar Cells Vol. 90 (2006), p.3285.

Google Scholar

[19] Jeffery L. Gray in: Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, chapter 3, The Physics of the Solar Cell, John Wiley & Sons, Ltd. (2003).

Google Scholar

[20] B. Yoo, K. Kim, S. H. Lee, W. M. Kim, N-G Park: Solar Energy Materials & Solar Cells Vol. 92 (2008), p.873.

Google Scholar

[21] C. Longo, J. Freitas, M. -A. De Paoli: J. Photochem. & Photobiol. A-Chemistry Vol. 159 (2003), p.33.

Google Scholar

[22] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, S. Yoshikawa: Solar Energy Materials & Solar Cells Vol. 91 (2007), p.1176.

DOI: 10.1016/j.solmat.2006.12.017

Google Scholar

[23] F. O. Lenzmann and J.M. Kroon: Advances in OptoElectronics Vol. 2007, (2007), Article ID 65073.

Google Scholar

[24] R. Solarska, J. Augustynski, K. Sayama: Electrochimica Acta Vol. 52 (2006), p.694.

Google Scholar

[25] A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, J. R. Durrant: J. Phys. Chem. B Vol. 109 (2005), p.12525.

Google Scholar

[26] S. Chappel, A. Zaban: Solar Energy Materials & Solar Cells Vol. 71 (2002), p.141.

Google Scholar

[27] F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Grätzel, D. Gal, S. Rühle, D. Cahen: J. Phys. Chem. B Vol. 105 (2001), p.6347.

Google Scholar

[28] K. Keis, E. Magnusson, H. Lindström, S-E. Lindquist, A. Hagfeldt: Solar Energy Materials & Solar Cells Vol 73 (2002), p.51.

DOI: 10.1016/s0927-0248(01)00110-6

Google Scholar

[29] Y. Yoshida, S. Tokashiki; K. Kubota, R. Shiratuchi, Y. Yamaguchi, M. Kono, S. Hayase: Energy Materials & Solar Cells Vol. 92 (2008), p.646.

DOI: 10.1016/j.solmat.2008.01.012

Google Scholar

[30] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin: Nano Letters Vol. 7 (2007), p.2183.

Google Scholar

[31] T. P. Chou, Q. F. Zhang, G. E. Fryxell, G. Z. Cao: Adv. Mater. Vol. 19 (2007), pp.2588-2592.

Google Scholar

[32] K. Tennakone, J. Bandara, P.K.M. Bandaranayake, G.R.A. Kumara, A. Konno: Jap. J. Appl. Phys. Part 1 Vol. 40, (2001), p.732.

Google Scholar

[33] R. Espinosa, I. Zumeta, J. L. Santana, F. Martinez-Luzardo, B. Gonzalez, S. Docteur, E. Vigil: Solar Energy Materials & Solar Cells Vol. 85 (2005), p.359.

DOI: 10.1016/j.solmat.2004.05.006

Google Scholar

[34] G. Boschloo, T. Marinado, K. Nonomura, T. Edvinsson, A. G. Agrios, D. P. Hagberg, L. Sun, M. Quintana, C. S. Karthikeyan, M. Thelakkat, A. Hagfeldt: Thin Solid Films Vol. 516 (2008), p.7214.

DOI: 10.1016/j.tsf.2007.12.035

Google Scholar

[35] W. H. Howie, F. Claeyssens, H. Miura, L. M Peter: J. Am. Chem. Soc. Vol. 130 (2008), p.1367.

Google Scholar

[36] X. M. Ma, J. L. Hua, W. J. Wu, Y. H. Jin, F. S. Meng, W. H. Zhan, H. Tian: Tetrahedron Vol. 64 (2008), p.345.

Google Scholar

[37] P.V.V. Jayaweera, A.G.U. Perera, K. Tennakone: Inorganica Chimica Acta Vol. 361 (2008), p.707.

DOI: 10.1016/j.ica.2007.05.030

Google Scholar

[38] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt: Solar Energy Materials & Solar Cells Vol. 87 (2005), p.117.

DOI: 10.1016/j.solmat.2004.07.017

Google Scholar

[39] H. Nusbaumer, J. -E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel: J. Phys. Chem. B Vol. 105 (2001), p.10461.

Google Scholar

[40] B.A. Gregg, F. Pichot, S. Ferrere, and C. L. Fields: J. Phys. Chem. B Vol. 105 (2001), p.422.

Google Scholar

[41] Z. Kebede, S. -E. Lindquist: Sol. Energy Mater. Sol. Cells Vol. 57 (1999), p.259.

Google Scholar

[42] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa: Sol. Energy Mater. Sol. Cells Vol. 70 (2001), p.151.

Google Scholar

[43] A. Fukui, R. Komiya, R. Yamanaka, A. Islam, L. Han: Solar Energy Materials & Solar Cells Vol. 90 (2006), p.649.

DOI: 10.1016/j.solmat.2005.01.020

Google Scholar

[44] C. Shi, S. Dai, K. Wang, X. Pan, F. Kong, L. Hu: Vibrational Spectroscopy Vol. 39 (2005), p.99.

Google Scholar

[45] G. Boschloo, L. Haggman, A. Hagfeldt: J. Phys. Chem. B Vol. 110 (2006) p.13144.

Google Scholar

[46] H. Lindström, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A. Hagfeldt: Nano Lett. Vol. 1 (2001), p.97.

DOI: 10.1021/nl0055254

Google Scholar

[47] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura, K. Murata: Sol. Energy Mater. Sol. Cells Vol. 79 (2003), p.459.

Google Scholar

[48] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel: J. Electrochem. Soc. Vol. 153 (2006), p. A2255.

DOI: 10.1149/1.2358087

Google Scholar

[49] W. J. Lee, E. Ramasamy, D. Y, Lee, J. S. Song: J. Photochem. Photobio. A-Chem. Vol. 194 (2008) p.27.

Google Scholar

[50] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng: Electrochem. Comm. Vol. 9 (2007), p.596.

Google Scholar

[51] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe: Thin Solid Films Vol. 472 (2005), p.242.

Google Scholar

[52] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi: Electrochem. Comm. Vol. 10 (2008), p.1555.

Google Scholar

[53] J-G. Chen, H-Y. Weib, K-C. Hoa: Solar Energy Materials & Solar Cells Vol. 91 (2007), p.1472.

Google Scholar

[54] A. Hagfeldtt, M. Grätzel: Chem. Rev. Vol. 95 (1995), p.49.

Google Scholar

[55] Boschloo, G. K.; Goossens, A.; Schoonman: J. J. Electroanal. Chem. Vol. 428 (1997), p.25.

Google Scholar

[56] A. Zaban, A. Meier, B. A. Gregg: J. of Phys. Chem. B Vol. 101 (1997), p.7985.

Google Scholar

[57] D. Vanmaekelbergh, P. E. de Jongh: J. Phys. Chem. B Vol. 103 (1999), p.747.

Google Scholar

[58] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago: J. Solid St. Electrochem. Vol. 3 (1999), p.337.

Google Scholar

[59] S. Ruhle, T. Dittrich: J. Phys. Chem. B Vol. 109 (2005), p.9522.

Google Scholar

[60] M. Grätzel: J. Photochem. Photobio. A-Chem. Vol. 164 (2004), p.3.

Google Scholar

[61] J. R. Durrant, S. A. Haque, E. Palomares: Coord. Chem. Rev. Vol. 248 (2004), p.1247.

Google Scholar

[62] G. Oskam, B.V. Bergeron, G.J. Meyer, P.C. Searson: J. Phys. Chem. B Vol. 105 (2001), p.6867.

Google Scholar

[63] J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. E. Tulloch: Prog. Photovolt: Res. Appl. Vol. 15 (2007).

DOI: 10.1002/pip.707

Google Scholar

[64] P. Wang, S.M. Zakeeruddin, J.E. Moser, K. Nazeeruddin, T. Sekiguchi, M. Grätzel: Nat. Mater. Vol. 2 (2003), p.402.

Google Scholar

[65] P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Grätzel: J. Phys. Chem. B Vol. 107 (2003), p.13280.

Google Scholar

[66] N. Yamanaka, R. Kawano, W. Kubo, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida: Chem. Commun. (2005), p.740.

Google Scholar

[67] H. Matsui, K. Okadaa, T. Kawashima, T. Ezure, N. Tanabe, R. Kawano, M. Watanabe: J. Photochem. Photobiol. A-Chem.: Vol. 164 (2004), p.129.

Google Scholar

[68] A. Noda, M. Watanabe: Electrochim. Acta Vol. 45 (2000), p.1265.

Google Scholar

[69] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M.A.B.H. Susan, N. Tanabe, M. Watanabe: J. Photochem. Photobiol. A-Chem. Vol. 164 (2004), p.87.

Google Scholar

[70] H. Paulsson, M. Berggrund, E. Svantesson, A. Hagfeldt, L. Kloo: Sol. Energy Mater. Sol. Cells Vol. 82 (2004), p.345.

Google Scholar

[71] H. Paulsson, A. Hagfeldt, L. Kloo: J. Phys. Chem. B Vol. 107 (2003), p.13665.

Google Scholar

[72] E. Stathatos, P. Lianos, C. Krontiras: J. Phys. Chem. B Vol. 105 (2001), p.3486.

Google Scholar

[73] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras: Nano Lett. Vol. 2 (2002), p.1259.

Google Scholar

[74] A.F. Nogueira, M. -A. De Paoli, I. Montanari, R. Monkhouse, J. Nelson, J.R. Durrant: J. Phys. Chem. B Vol. 105 (2001), p.7517.

Google Scholar

[75] E. Stathatos, P. Lianos, U. Lavrencic-Stangar, B. Orel: Adv. Mater. Vol. 14 (2002), p.354.

DOI: 10.1002/1521-4095(20020304)14:5<354::aid-adma354>3.0.co;2-1

Google Scholar

[76] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, S. Yanagida: J. Phys. Chem. B Vol. 105 (2001), p.12809.

DOI: 10.1021/jp012026y

Google Scholar

[77] S. Murai, S. Mikoshiba, H. Sumino, S. Hayase: J. Photochem. Photobiol. A-Chem. Vol. 148 (2002), p.33.

Google Scholar

[78] J. Xia, F. Li, C. Huang, J. Zhai, L. Jiang: Solar Energy Materials & Solar Cells Vol. 90 (2006), p.944.

Google Scholar

[79] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel: J. Am. Chem. Soc. Vol. 125 (2003), p.1166.

Google Scholar

[80] E. Stathatos, P. Lianos, C. Krontiras: J. Phys. Chem. B Vol. 105 (2001), p.3486.

Google Scholar

[81] B. Muthuraaman, S. Murugesan, V. Mathew, S. Ganesan, B. J. Paul, J. Madhavan, P. Maruthamuthu, S. A. Suthanthiraraj: Solar Energy Materials & Solar Cells Vol. 92 (2008), p.1712.

DOI: 10.1016/j.solmat.2008.08.003

Google Scholar

[82] P. Wang, S.M. Zakeeruddin, J. Moser, R. Humphry-Baker, M. Grätzel: J. Am. Chem. Soc. Vol. 126 (2004), p.7164.

Google Scholar

[83] K. Tennakone, G. Kumara, A.R. Kumarasinghe, K.G.U. Wijayantha, P.M. Sirimanne: Semicond. Sci. Technol. Vol. 10 (1995), p.1689.

DOI: 10.1088/0268-1242/10/12/020

Google Scholar

[84] A. Konno, T. Kitagawa, H. Kida, G. R. A. Kumara, K. Tennakone: Current Applied Physics Vol. 5 (2005), p.149.

Google Scholar

[85] V.P.S. Perera, K. Tennakone: Sol. Energy Mater. Sol. Cells Vol. 79 (2003), p.249.

Google Scholar

[86] P.M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter, H. Tributsch: Semicond. Sci. Technol. Vol. 18 (2003), p.708.

DOI: 10.1088/0268-1242/18/7/320

Google Scholar

[87] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone: Langmuir Vol. 18 (2002) p.10493.

Google Scholar

[88] T. Taguchi, X.T. Zhang, I. Sutanto, K. Tokuhiro, T.N. Rao, H. Watanabe, T. Nakamori, M. Uragami, A. Fujishima: Chem. Commun. 19 (2003) 2480.

DOI: 10.1039/b306118c

Google Scholar

[89] G.R.A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V.V. Jayaweera, K. Tennakone: J. Photochem. Photobiol. A-Chem. Vol. 164 (2004), p.183.

Google Scholar

[90] G.R.A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, K. Tennakone: Chem. Mater. Vol. 14 (2002), p.954.

Google Scholar

[91] Q.B. Meng, K. Takahashi, X.T. Zhang, I. Sutanto, T.N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami: Langmuir Vol. 19 (2003), p.3572.

DOI: 10.1021/la026832n

Google Scholar

[92] H. J. Snaith, S. M. Zakeeruddin, L. Schmidt-Mende, C. Klein, M. Grätzel: Angew. Chem. Int. Ed. Vol. 44 (2005), p.6413.

DOI: 10.1002/anie.200502009

Google Scholar

[93] J. Bisquert, V. S. Vikhrenko: J. Phys. Chem. B Vol. 108 (2004), p.2313.

Google Scholar

[94] B. O'Regan, F. O. Lenzmann, R. Muis, and J. Wienke: Chem. Materials Vol. 14 (2002), p.5023.

Google Scholar

[95] B. C. O'Regan, F. O. Lenzmann: J. Phys. Chem. B Vol. 108 (2004), p.4342.

Google Scholar

[96] L. Bandara, H. Weerasinghe: Sol. Energy Mater. Sol. Cells Vol. 85 (2005), p.385.

Google Scholar

[97] Y-M Lee, C-H. Hsu, H-W. Chen: App. Surf. Sc. Vol. 255 (2009), p.4658.

Google Scholar

[98] J Bandara and J P Yasomanee: Semicond. Sci. Technol. Vol. 22 (2007), p.20.

Google Scholar

[99] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel: Nature Vol. 395 (1998), p.583.

DOI: 10.1038/26936

Google Scholar

[100] J. Kruger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, U. Bach: Appl. Phys. Lett. Vol. 79 (2001), p. (2085).

DOI: 10.1063/1.1406148

Google Scholar

[101] F. Fabregat-Santiago, J. Bisquert, E. Palomares, S. A. Haque, J. R. Durrant: J. Appl. Phys. Vol. 100 (2006), 034510.

Google Scholar

[102] J. Kruger, R. Plass, M. Grätzel, H.J. Matthieu: Appl. Phys. Lett. Vol. 81 (2002), p.367.

Google Scholar

[103] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Sol. Energy Mater. Sol. Cells Vol. 55 (1998) p.113.

Google Scholar

[104] T. Kitamura, M. Maitani, M. Matsuda, Y. Wada, S. Yanagida: Chem. Lett. (2001), p.1054.

Google Scholar

[105] G. P. Smestad, S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg: Solar Energy Materials & Solar Cells Vol. 76 (2003), p.85.

DOI: 10.1016/s0927-0248(02)00252-0

Google Scholar

[106] W. S. Shin, S. C. Kim, S-J. Lee, H-S Jeon, M-K. Kim, B. V. K. Naidu, S-H. Jin, J-K. Lee, J. W. Lee, Y-S. Gal: J. Polymer Sc. Part A: Polymer Chem. Vol. 45 (2007), p.1394.

Google Scholar

[107] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida: Electrochem. Commun. Vo. 6 (2004), p.71.

Google Scholar

[108] E.M.J. Johansson, A. Sandell, H. Siegbahn, H. Rensmo, B. Mahrov, G. Boschloo, E. Figgemeier, A. Hagfeldt, S.K.M. Jönsson, M. Fahlman: Synthetic Metals Vol. 149 (2005), p.157.

DOI: 10.1016/j.synthmet.2004.12.004

Google Scholar

[109] S. Tan, J. Zhai, B. Xue, M. Wan, Q. Meng, Y. Li, L. Jiang and D. Zhu: Langmuir Vol. 20 (2004), p.2934.

Google Scholar

[110] G.K.R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida: J. Photochem. Photobiol. A-Chem. Vol. 164 (2004), p.61.

Google Scholar

[111] A. F. Nogueira, C. Longo, M. -A. De Paoli: Coord. Chem. Reviews Vol. 248 (2004), p.1455.

Google Scholar

[112] F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati: Nature Vol. 394 (1998), p.456.

Google Scholar

[113] Y. J. Ren, Z. C. Zhang, S. B. Fang, M. Z. Yang, S. M. Cai : Sol. Energy Mater. Sol. Cells Vol. 71 (2002), p.253.

Google Scholar

[114] M. S. Kang, J. H. Kim, Y. J. Kim, J. Won, N. G. Park, Y. S. Kang: Chem. Commun. (2005) p.889.

Google Scholar

[115] A. F. Nogueira, M. A. De Paoli: Sol. Energy Mater. Sol. Cells Vol. 61 (2000), p.135.

Google Scholar

[116] A. F. Nogueira, J. R. Durrant, M. A. De Paoli : Adv. Mater. Vol. 13 (2001), p.826.

Google Scholar

[117] S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, J. R. Durrant, Chem. Commun. (2003) p.3008.

DOI: 10.1039/b308529e

Google Scholar

[118] M. Matsumoto, Y. Wada, T. Kitamura, K. Shigaki, T. Inoue, M. Ikeda, S. Yanagida: Bull. Chem. Soc. Japan Vol. 74 (2001), p.387.

Google Scholar

[119] G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki, P. Falaras: J. Photochem. Photobiol. A-Chem. Vol. 149 (2002), p.191.

Google Scholar

[120] E. Stathatos, P. Lianos, U. Lavrencic-Stangar, B. Orel: Adv. Mater. Vol. 14 (2002), p.354.

DOI: 10.1002/1521-4095(20020304)14:5<354::aid-adma354>3.0.co;2-1

Google Scholar

[121] Y. Shibata, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, S. Hayase: Chem. Commun. (2003), p.2730.

DOI: 10.1039/b305368g

Google Scholar

[122] J. H. Kim, M-S Kang, Y. J. Kim, J. Won, N-G Park, Y. S. Kang: Chem. Commun. (2004), p.1662.

Google Scholar

[123] H. Han, U. Bach, Y-B Cheng, R. A. Caruso: Appl. Phys. Lett. Vol. 90 (2007) p.213510.

Google Scholar

[124] I. Kaiser, K. Ernst, Ch-H. Fischer, R. Könenkamp, C. Rost, I. Sieber, M. Ch. Lux-Steiner: Solar Energy Mater. Solar Cells Vol. 67 (2001), p.89.

DOI: 10.1016/s0927-0248(00)00267-1

Google Scholar

[125] R. Tena-Zaera, A. Katty, S. Bastide, C. Levy-Clement, B. O'Regan, V. Munoz-Sanjose: Thin Solid Films Vol. 483 (2005), p.372.

DOI: 10.1016/j.tsf.2005.01.010

Google Scholar

[126] C. Lévi-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes: Adv. Mater. Vol. 17 (2005), p.1512.

DOI: 10.1002/adma.200401848

Google Scholar

[127] E. Vigil, B. González, I. Zumeta, C. Domingo, X. Domenech, J. A. Ayllon: Thin Solid Films Vol. 489 (2005), p.50.

Google Scholar

[128] M. Nanu, J. Schoonman, A. Goossens: Adv. Mater. Vol. 16 (2004) p.453.

Google Scholar

[129] T. Taguchi, X. T. Zhang, I. Sutanto, K. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragami, A. Fujishima: Chem. Commun. Vol. 19 (2003), p.2480.

DOI: 10.1039/b306118c

Google Scholar

[130] K. Ernst, A. Belaidi, R. Könenkamp: Semicond. Sci. Technol. Vol. 18 (2003), p.475.

Google Scholar

[131] P. M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter, H. Tributsch: Semicond. Sci. Technol. Vol. 18 (2003) p.708.

DOI: 10.1088/0268-1242/18/7/320

Google Scholar

[132] J. Bandara, H. C. Weerasinghe: Sol. Energy Mater. Sol. Cells Vol. 85 (2005) p.385.

Google Scholar

[133] J. Bandara, J. P. Yasomanee: Semicond. Sci. Technol. Vol. 22 (2007) p.20.

Google Scholar

[134] R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, C. Levy- Clement: C. R. Chim. Vol. 9 (2006), p.717.

Google Scholar

[135] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes: J. Photochem. Photobiol. A-Chem. Vol. 181 (2006), p.306.

Google Scholar

[136] L. Schmidt-Mende, M. Grätzel: Thin Solid Films Vol. 500 (2006), p.296.

Google Scholar

[137] M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, J-P. Ahn: Appl. Phys. Lett. Vol. 87 (2005), p.113113.

Google Scholar

[138] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang: Nature Mat. Vol. 4 (2005), p.455.

Google Scholar

[139] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim: Nanotech. Vol. 15 (2004), p.1861.

Google Scholar

[140] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker: J. Am. Chem. Soc. Vol. 130 (2008), p.13364.

Google Scholar

[141] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes: Appl. Phys. Lett. Vol. 91 (2007) p.152111.

DOI: 10.1063/1.2799257

Google Scholar

[142] K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, C. A. Grimes: Langmuir Vol. 23 (2007), p.12445.

Google Scholar

[143] J. Chen, J. L. Song, X. W. Sun: Appl. Phys. Lett. Vol. 94 (2009), p.153115.

Google Scholar

[144] S-Q. Fan, D. Kim, J-J. Kim, D. W. Jung, S. O. Kang, J. Ko: Electrochem. Comm. Vol. 11 (2009), p.1337.

Google Scholar

[145] L. J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda: Appl. Phys. Lett. Vol. 91 (2007), p.23116.

Google Scholar

[146] X-F. Gao, H-B. Li, W-T. Sun, Q. Chen, F-Q. Tang, L-M. Peng: J. Phys. Chem. C Vol. 113 (2009), p.7531.

Google Scholar

[147] G-Y. Lan, Z. Yang, Y-W. Lin, Z-H. Lin, H-Yi Liao, H-T. Chang: J. Mater. Chem. Vol. 19 (2009), 2349.

Google Scholar

[148] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, A. L. Efros: Nano Lett. Vol. 5 (2005), p.865.

DOI: 10.1021/nl0502672

Google Scholar

[149] W. Lee, J. Lee, S. K. Min, T. Park, W. Yi, S-H. Han: Mater. Sc. & Eng. B Vol. 156 (2009), p.48.

Google Scholar

[150] W. Lee, J. Lee, S. Lee, W. Yi, S-H. Han, B. W. Cho: Appl. Phys. Lett. Vol. 92 (2008) P. 153510.

Google Scholar

[151] C-H. Chang. Y-L. Lee: Appl. Phys. Lett. Vol. 91 (2007), p.53503.

Google Scholar

[152] S-C. Lin, Y-L. Lee, C-H. Chang, Y-J. Shen, Y-M. Yang, Appl. Phys. Lett. Vol. 90 (2007), p.143517.

Google Scholar

[153] I. Zumeta, J.A. Ayllon, B. Gonzalez, X. Domenech, E. Vigil, Solar Energy Materials & Solar Cells Vol. 93 (2009), p.1728.

Google Scholar

[154] H. J. Snaith, M. Grätzel, Advanced Materials (2006), p. (1910).

Google Scholar

[155] S. Rühle, D. Cahen, J. Phys. Chem. B. Vol. 108 (2004), p.17946.

Google Scholar

[156] P. J. Cameron, L. M. Peter, J. Phys. Chem. B Vol. 109 (2005), p.7392.

Google Scholar

[157] T. Sreethawong, Y. Suzuki, S. Yoshikawa, S. Ngamsinlapasathian, Solar Energy Materials & Solar Cells Vol. 86 (2005), p.269.

DOI: 10.1016/j.solmat.2004.06.010

Google Scholar

[158] G. P. Smestad, M. Grätzel, J. Chem. Education Vol. 75 (1998), p.752.

Google Scholar

[159] E. Vigil, L. Saadoun, J. A. Ayllón, X. Domènech, I. Zumeta, R. Rodríguez-Clemente, Thin Solid Films Vol. 365 (2000), p.12.

DOI: 10.1016/s0040-6090(99)00946-3

Google Scholar

[160] I. Zumeta, B. González, R. Espinosa, J. A. Ayllón, E. Vigil, Semicond. Sci. Technol., Vol. 19, L1-L4, (2004).

Google Scholar

[161] A. M. Peiró, E. Vigil, X. Domènech, J. Peral, J. A. Ayllón, Thin Solid Films Vol 411 (2002), p.185.

DOI: 10.1016/s0040-6090(02)00276-6

Google Scholar

[162] E. Vigil, B. González, I. Zumeta, S. Docteur, A. M. Peiró, D. Gutiérrez-Tauste, C. Domingo, X. Doménech, J. A. Ayllón, J. Crystal Growth Vol. 262 (2004), p.366.

DOI: 10.1016/j.jcrysgro.2003.10.046

Google Scholar

[163] E. Vigil, D. Dixon, J.W.J. Hamilton, J.A. Byrne, Surface & Coatings Technology Vol. 203 (2009), p.3614.

Google Scholar

[164] I. Zumeta, R. Espinosa, J.A. Ayllón, E. Vigil, Semicond. Sci. Technol. Vol. 17 (2002), p.1218.

Google Scholar

[165] L. Rassaei, E. Vigil, R. W. French, M. F. Mahon, R. G. Compton, F. Marken, Electrochimica Acta Vol. 54 (2009), p.6680.

DOI: 10.1016/j.electacta.2009.06.062

Google Scholar

[166] E. Vigil, J. A. Ayllón, A. M. Peiró, R. Rodríguez-Clemente, X. Domènech, J. Peral, Langmuir Vol 17 (2001), p.891.

DOI: 10.1021/la000945u

Google Scholar

[167] J. N. Hart, R. Cervinia, Y. -B. Cheng, G.P. Simon, L. Spiccia, Solar Energy Materials & Solar Cells Vol. 84 (2004), p.135.

DOI: 10.1016/j.solmat.2004.02.041

Google Scholar

[168] J. N. Hart, D. Menzies, Y. -B. Cheng, G.P. Simon, L. Spiccia, Solar Energy Materials & Solar Cells, Vol. 91 (2007), p.6.

DOI: 10.1016/j.solmat.2006.06.059

Google Scholar

[169] M. Penny, T. Farrell, G. Will, J. Bell: J. Photochem. & Photobiol. A: Chemistry Vol. 164 (2004), p.41.

Google Scholar

[170] S. Södergen, A. Hagfeldt, J. Olsson, S-E. Lindquist: J. Phys. Chem Vol. 98 (1994), p.5552.

Google Scholar

[171] F. Cao, G. Oskam, G. J. Meyer, P. C. Searson: J. Phys. Chem. Vol. 100 (1996), p.17021.

Google Scholar

[172] B. van der Zanden, A. Goossens: J. Phys. Chem. B Vol. 104 (2000), p.7171.

Google Scholar

[173] A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, K. G. U. Wijayantha: J. Phys. Chem. B Vol. 104 (2000), p.949.

Google Scholar

[174] S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada, S. Yanagida: J. Phys. Chem. B Vol. 108 (2004), p.1628.

Google Scholar

[175] .

Google Scholar

[18] A. Kambili, A.B. Walker, F.L. Qiu, A.C. Fisher, A.D. Savin, L.M. Peter: Physica E Vol. 14 (2002), p.203.

Google Scholar

[176] .

Google Scholar

[19] M. J. Cass, F. L. Qiu, A. B. Walker, A. C. Fisher, L. M. Peter: J. Phys. Chem. B Vol. 107 (2003), p.113.

Google Scholar

[177] .

Google Scholar

[25] G. Kron, T. Egerter, J. H. Werner, and U. Rau, J. Phys. Chem. B Vol. 107 (2003), p.3556.

Google Scholar