αShape, Birth of one Universal Parameter?

Article Preview

Abstract:

The description of different effects observed in nature by only one general equation is the “Holy Grail” for all physicists. This goal has been achieved for characteristic temperatures through a top-down approach (studying size effects from macroscopic laws) and is presented in this chapter. Here, we show the general equation based on the surface area to volume ratio of nanostructures and statistics (Fermi-Dirac or Bose-Einstein) followed by the particles involved in the investigated phenomena. From the distinction between fermions and bosons, so-called particles which follow a Fermi-Dirac or a Bose-Einstein statistics respectively, this equation indicates the universal behaviour of size and shape effects on different material properties like melting, ferromagnetism, vibration and superconduction. The same shape parameter used in this universal equation can be used to determine the melting enthalpy, the phase diagrams of alloys, the energy bandgap and also the creep behavior of nanomaterials. Theoretical predictions show satisfactory agreement with experimental data taken from literature.

You might also be interested in these eBooks

Info:

[1] M. Wautelet and D. Duvivier European Journal of Physics Vol. 28 (2007) p.953.

Google Scholar

[2] F. Delogu Nanotechnology Vol. 18 (2007) p.325706.

Google Scholar

[3] M. Wautelet Physics Letters A Vol. 246 (1998) p.341.

Google Scholar

[4] G. Guisbiers and L. Buchaillot Journal of Physical Chemistry C Vol. 113 (2009) p.3566.

Google Scholar

[5] H.M. Lu, P.Y. Li, Z.H. Cao and X.K. Meng Journal of Physical Chemistry C Vol. 113 (2009) p.7598.

Google Scholar

[6] M.J. Yacaman, J.A. Ascencio, H.B. Liu and J. Gardea-Torresdey Journal of Vacuum Science & Technology B Vol. 19 (2001) p.1091.

Google Scholar

[7] G. Guisbiers, M. Kazan, O. Van Overschelde, M. Wautelet and S. Pereira Journal of Physical Chemistry C Vol. 112 (2008) p.4097.

DOI: 10.1021/jp077371n

Google Scholar

[8] H.M. Lu, F.Q. Han and X.K. Meng Journal of Physical Chemistry B Vol. 112 (2008) p.9444.

Google Scholar

[9] G. Guisbiers, M. Wautelet and L. Buchaillot Physical Review B Vol. 79 (2009) p.155426.

Google Scholar

[10] F.L. Williams and D. Nason Surface Science Vol. 45 (1974) p.377.

Google Scholar

[11] G. Guisbiers and L. Buchaillot Physics Letters A Vol. 374 (2009) p.305.

Google Scholar

[12] C. Kittel: Introduction to solid state physics (Wiley, New York 1995).

Google Scholar

[13] E.P. Wohlfarth Review of Modern Physics Vol. 25 (1953) p.211.

Google Scholar

[14] C.Q. Sun Progress in Solid State Chemistry Vol. 35 (2007) p.1.

Google Scholar

[15] M.A. Shandiz Journal of Physics: Condensed Matter Vol. 20 (2008) p.325237.

Google Scholar

[16] M.X. Gu, C.Q. Sun, Z. Chen, T.C. Au Yeung, S. Li, C.M. Tan and V. Nosik Physical Review B Vol. 75 (2007) p.125403.

Google Scholar

[17] X.Y. Lang, W.T. Zheng and Q. Jiang Physical Review B Vol. 73 (2006) p.224444.

Google Scholar

[18] W.L. McMillan Physical Review Vol. 167 (1968) p.331.

Google Scholar

[19] Q. Jiang, X.F. Cui and M. Zhao Applied Physics A: Materials Science & Processing Vol. 78 (2004) p.703.

Google Scholar

[20] S.C. Vanithakumari and K.K. Nanda Physics Letters A Vol. 372 (2008) p.6930.

Google Scholar

[21] K.K. Nanda, S.N. Sahu and S.N. Behera Physical Review A Vol. 66 (2002) p.013208.

Google Scholar

[22] G. Guisbiers, O. Van Overschelde and M. Wautelet Applied Physics Letters Vol. 92 (2008) p.103121.

Google Scholar

[23] U.K. Mishra and J. Singh: Semiconductor device physics and design (Springer, Dordrecht 2008).

Google Scholar

[24] J.A. Van Vechten and M. Wautelet Physical Review B Vol. 23 (1981) p.5543.

Google Scholar

[25] M. Li and J.C. Li Materials Letters Vol. 60 (2006) p.2526.

Google Scholar

[26] C.C. Yang and Q. Jiang Materials Science & Engineering B Vol. 131 (2006) p.191.

Google Scholar

[27] M. Ohring: Materials science of thin films deposition and structure (Academic Press, New York 2002).

Google Scholar

[28] F.G. Shi, T.G. Nieh and Y.T. Chou Scripta Materialia Vol. 43 (2000) p.265.

Google Scholar

[29] P. Guiraldenq Techniques de l'ingénieur Vol. M55 (1994) p.1.

Google Scholar

[30] G. Guisbiers and L. Buchaillot Nanotechnology Vol. 19 (2008) p.435701.

Google Scholar

[31] B. Cai, Q.P. Kong, L. Lu and K. Lu Materials Science & Engineering A Vol. 286 (2000) p.188.

Google Scholar

[32] Q. Jiang, S.H. Zhang and J.C. Li Solid State Communications Vol. 130 (2004) p.581.

Google Scholar

[33] K. Dick, T. Dhanasekaran, Z. Zhang and D. Meisel Journal of the American Chemical Society Vol. 124 (2002) p.2312.

Google Scholar

[34] J.A. Thornton and D.W. Hoffman Thin Solid Films Vol. 171 (1989) p.5.

Google Scholar

[35] G. Guisbiers, O. Van Overschelde and M. Wautelet Acta Materialia Vol. 55 (2007) p.3541.

DOI: 10.1016/j.actamat.2007.02.003

Google Scholar

[36] C.V. Thompson and R. Carel Journal of the Mechanics and Physics of Solids Vol. 44 (1996) p.657.

Google Scholar