Preparation of Barium Titanate Nanoparticles by Particle Growth Control

Article Preview

Abstract:

Barium titanate (BaTiO3) nanoparticles were prepared by a two-step thermal decomposition method using barium titanyl oxalate nanoparticles of size 30 nm with and without dry-jet milling. Dry-jet milled barium titanyl oxalate nanoparticles (BTO-B) were well-dispersed whereas those without the dry-jet milling procedure (BTO-A) were partially aggregated. A heat annealing of obtained BaTiO3 nanoparticles at the same temperature resulted in crystallite sizes of the BTO-A derived BaTiO3 nanoparticles much smaller than those of the BTO-B derived. A mesoscopic particle structure analysis of revealed much thinner surface cubic layer thickness of the BTO-B derived BaTiO3 nanoparticles compared with the BTO-A derived BaTiO3 nanoparticles. This indicated the particle growth rate to be the most important parameter for the surface cubic layer thickness determination. A relationship between the surface cubic layer thickness and the particle growth rate was investigated precisely in this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-174

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kinoshita and A. Yamaji: J. Appl. Phys. Vol. 45 (1976), p.371.

Google Scholar

[2] G. Arlt, D. Hennings and G. De With: J. Appl. Phys., 58 (1985), p.1619.

Google Scholar

[3] K. Ishikawa, K. Yoshikawa and N. Okada: Phys. Rev. B, 37 (1988), p.5852.

Google Scholar

[4] K. Uchino, E. Sadanaga and T. Hirose: J. Am. Ceram. Soc., 72 (1989), p.1555.

Google Scholar

[5] M. H. Frey and D. A. Payne: Phys. Rev. B, 54 (1996), p.3158.

Google Scholar

[6] S. Wada, T. Suzuki and T. Noma: J. Ceram. Soc. Jpn., 104 (1996), p.383.

Google Scholar

[7] D. McCauley, R. E. Newnham and C. A. Randall: J. Am. Ceram. Soc., 81 (1998), p.979.

Google Scholar

[8] Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson and P. Nanni: Phys. Rev. B, 70 (2004), 024107.

DOI: 10.1016/j.powtec.2004.09.016

Google Scholar

[9] S. Wada, M. Narahara, T. Hoshina, H. Kakemoto and T. Tsurumi: J. Mater. Sci., 38 (2003), p.2655.

DOI: 10.1023/a:1024438703449

Google Scholar

[10] S. Wada, H. Yasuno, T. Hoshina, S. -M. Nam, H. Kakemoto and T. Tsurumi: Jpn. J. Appl. Phys., 42 (2003), p.6188.

DOI: 10.1143/jjap.42.6188

Google Scholar

[11] T. Hoshina, S. Wada, Y. Kuroiwa and T. Tsurumi: Appl. Phys. Lett. Vol. 93 (2008) 192914.

DOI: 10.1063/1.3027067

Google Scholar

[12] S. Kondo, C. Moriyoshi, Y. Kuroiwa and S. Wada: Key Eng. Mater. Vol. 421-422 (2010), p.506.

Google Scholar

[13] S. Wada, S. Kondo, C. Moriyoshi and Y. Kuroiwa: Jpn. J. Appl. Phys., 47 (2008), p.7612. Fig. 5. 002 and 200 planes for the BaTiO3 nanoparticles prepared at (a) 850 ˚C for 1 h, and (b) 800 ˚C for 16 h.

Google Scholar