Morphology Control of Phosphors Synthesized by Microwave Heating Method

Article Preview

Abstract:

Ba2Gd3Li3Mo8O32:Eu3+ phosphor was prepared using a single mode microwave oven operated at a frequency of 2.45 GHz and a power of 500 W. The temperature of raw materials, mixtures of BaCO3, Gd2O3, Li2CO3, MoO3 and Eu2O3 subjected to microwave irradiation increased to about 1073 K in 120 s, followed by a sharp drop despite irradiating the raw materials continuously. By measuring the dielectric loss factor of the raw materials at 2.45 GHz, the temperature increased could be attributed to the fact that MoO3 absorbs a high proportion of microwave energy. In the case of the microwave heating method, the phosphor particles were highly non-aggregated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-236

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Whittaker and D.M.P. Mingos: J. Chem. Soc. Dalton Trans. (1993), p.2541.

Google Scholar

[2] C.C. Landry and A.R. Barron: Science Vol. 260 (1993), p.1653.

Google Scholar

[3] B. Vaidhyanathan, M. Ganguli and K.J. Rao: Mater. Res. Bull. Vol. 30 (1995), p.1173.

Google Scholar

[4] D.R. Baghurst, A.M. Chippindale and D.M.P. Mingos: Nature, Vol. 33224 (1988), p.311.

Google Scholar

[5] J.D. Houmes and H. -C. zur Loye, J. Solid State Chem. Vol. 130 (1997), p.266.

Google Scholar

[6] A.G. Whittaker and D.M.P. Mingos:, J. Chem. Soc. Dalton Trans. (1992), p.2751.

Google Scholar

[7] M. Nakayama, K. Watanabe, H. Ikuta, Y. Uchimoto and M. Wakihara: Solid State Ionics, Vol. 164 (2003), p.35.

DOI: 10.1016/j.ssi.2003.08.048

Google Scholar

[8] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee and H.G. Kim: Electrochem. Commun., Vol. 5 (2003), p.839.

Google Scholar

[9] S. Seki, Y. Ito, K. Uematsu, K. Toda, M. Sato: Rare Eaths Vol. 50 (2007), p.148.

Google Scholar

[10] G. Subodh, M.T. Sebastian: Mater. Sci. and Eng. B Vol. 136 (2007), p.50.

Google Scholar

[11] R. F. Klevtsova, A. D. Vasil'yev, L. A. Glinskaya, A. I. Kruglik, N. M. Kozhevnikova and V. P. Korsun: Zhurnal Strukturnoi Khimii Vol. 33 (1992), p.126.

Google Scholar

[12] K. Toda, in: Nanoparticle Technolohy Handbook, edited by M. Hosokawa, K. Nogi, M. Naito and T. Yokoyama, p.464, ELSEVIER (2007).

Google Scholar