Electron Transportation and Recombination in TiO2 Film for Flexible Dye-Sensitized Solar Cell

Article Preview

Abstract:

Research on the flexible dye-sensitized solar cells (DSCs) has been more and more extensively conducted during the recent years both academically and comercially for the sake of its further reduced expense and even broader application. However, significant promotion of electron transport properties and consequently the photovoltaic performances of such devices are perpetually hindered by the key problem that the poor heat tolerance of the plastic substrates employed in flexible DSCs makes high-temperature sintering of the photoanode films impossible. Based on a brief overview of the current state of research on flexible DSCs, including new materials and delicate processing techniques, and the research results from the author’s own group, this chapter specially treats the profound mechanistic issue of electron transport and recombination in flexible DSCs, which is rarely discussed and relatively less well understood up to now. It is pointed out that the electron transport and recombination dominate photovoltaic performance of the flexible DSCs and suppressing the recombination of injected electrons with electrolyte redox species is of crucial sense for performance promotion. Besides, the methods for restraining electron recombination are proposed and the developing trend and prospects of flexible DSCs are also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-133

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Oregan, M. Gratzel: Nature Vol. 353 (1991), pp.737-740.

Google Scholar

[2] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant: J. Am. Chem. Soc. Vol. 125 (2003), pp.475-482.

Google Scholar

[3] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura: Advanced Materials Vol. 12 (2000), pp.1214-1217.

DOI: 10.1002/1521-4095(200008)12:16<1214::aid-adma1214>3.0.co;2-z

Google Scholar

[4] M. Gratzel: Nature Vol. 414 (2001), pp.338-344.

Google Scholar

[5] Q. Wang, J. E. Moser, M. Gratzel: J. Phys. Chem. B Vol. 109 (2005), pp.14945-14953.

Google Scholar

[6] H. Lindstrom, G. Boschloo, S. E. Lindquist, A. Hagfeldt: Molecules as Components of Electronic Devices Vol. 844 (2003), pp.123-132.

Google Scholar

[7] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A. Hagfeldt: Nano Letters Vol. 1 (2001), pp.97-100.

Google Scholar

[8] H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt: J. Photochem. Photobiology a-Chemistry Vol. 145 (2001), pp.107-112.

Google Scholar

[9] J. Halme, M. Toivola, A. Tolvanen, P. Lund: Solar Energy Materials and Solar Cells Vol. 90 (2006), pp.872-886.

DOI: 10.1016/j.solmat.2005.05.007

Google Scholar

[10] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa: Chem. Comm. (2007), pp.4767-4769.

Google Scholar

[11] C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, D. L. Kwong: Applied Physics Letters Vol. 92 (2008), p.143101.

Google Scholar

[12] D. S. Zhang, T. Yoshida, K. Furuta, H. Minoura: Journal of Photochemistry and Photobiology a-Chemistry Vol. 164 (2004), pp.159-166.

Google Scholar

[13] D. S. Zhang, T. Yoshida, H. Minoura: Advanced Materials Vol. 15 (2003), pp.814-817.

Google Scholar

[14] W. W. Tan, J. M. Chen, X. W. Zhou, J. B. Zhang, Y. A. Lin, X. P. Li, X. R. Xiao: Journal of Solid State Electrochemistry Vol. 13 (2009), pp.651-656.

Google Scholar

[15] Y. Masuda, S. Shano, Anon: Electrode for solar cell obtained by forming microwave absorption exothermic layer and inorganic semiconductor layer on conductive layer of flexible substrate, and irradiating microwave, , in: (2007).

Google Scholar

[16] S. Uchida, M. Timiha, H. Takizawa, M. Kawaraya: Journal of Photochemistry and Photobiology a-Chemistry Vol. 164 (2004), pp.93-96.

Google Scholar

[17] J. N. Hart, D. Menzies, Y. B. Cheng, G. P. Simon, L. Spiccia: Journal of Sol-Gel Science and Technology Vol. 40 (2006), pp.45-54.

Google Scholar

[18] S. Uchida, M. Tomiha, N. Masaki, A. Miyazawa, H. Takizawa: Solar Energy Materials and Solar Cells Vol. 81 (2004), pp.135-139.

DOI: 10.1016/j.solmat.2003.08.020

Google Scholar

[19] T. N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka: Journal of Photochemistry and Photobiology a-Chemistry Vol. 164 (2004), pp.187-191.

Google Scholar

[20] T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura, S. Uegusa: Chemistry Letters (2002), pp.1250-1251.

Google Scholar

[21] H. Minoura, T. Yoshida: Electrochemistry Vol. 76 (2008), pp.109-117.

Google Scholar

[22] J. H. Yum, S. S. Kim, D. Y. Kim, Y. E. Sung: Journal of Photochemistry and Photobiology aChemistry Vol. 173 (2005), pp.1-6.

Google Scholar

[23] T. Miyasaka, Y. Kijitori, T. N. Murakami, N. Kawashima: Organic Photovoltaics Iv Vol. 5215 (2004), pp.219-225.

Google Scholar

[24] T. Miyasaka, Y. Kijitori: Journal of the Electrochemical Society Vol. 151 (2004), p. A1767A1773.

Google Scholar

[25] N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin: Advanced Materials Vol. 17 (2005), pp.2349-2353.

Google Scholar

[26] F. Pichot, J. R. Pitts, B. A. Gregg: Langmuir Vol. 16 (2000), pp.5626-5630.

Google Scholar

[27] D. S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura: Advanced Functional Materials Vol. 16 (2006), pp.1228-1234.

Google Scholar

[28] L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan, O. P. Siclovan: Solar Energy Materials and Solar Cells Vol. 90 (2006), pp.1041-1051.

DOI: 10.1016/j.solmat.2005.05.019

Google Scholar

[29] D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, J. A. Ayllon: J. Photochem. Photobiology A-Chemistry Vol. 175 (2005), pp.165-171.

Google Scholar

[30] C. Longo, J. Freitas, M. A. De Paoli: Journal of Photochemistry and Photobiology a-Chemistry Vol. 159 (2003), pp.33-39.

Google Scholar

[31] K. Wessels, A. Feldhoff, M. Wark, J. Rathousky, T. Oekermann: Electrochemical and Solid State Letters Vol. 9 (2006), p. C93-C96.

DOI: 10.1149/1.2186430

Google Scholar

[32] H. Kim, R. Auyeung, M. Ollinger, G. P. Kushto, Z. H. Kafafi, A. Pique: Applied Physics aMaterials Science & Processing Vol. 83 (2006), pp.73-76.

Google Scholar

[33] D. S. Zhang, T. Yoshida, H. Minoura: Chemistry Letters (2002), pp.874-875.

Google Scholar

[34] T. Miyasaka, M. Ikegami, Y. Kijitori: Journal of the Electrochemical Society Vol. 154 (2007), p. A455-A461.

Google Scholar

[35] T. Miyasaka, Y. Kijitori, M. Ikegami: Electrochemistry Vol. 75 (2007), pp.2-12.

Google Scholar

[36] X. Li, H. Lin, J. B. Li, N. Wang, C. F. Lin, L. Z. Zhang: Journal of Photochemistry and Photobiology a-Chemistry Vol. 195 (2008), pp.247-253.

Google Scholar

[37] X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui, L. Z. Zhang: Journal of Physical Chemistry C Vol. 112 (2008), pp.13744-13753.

Google Scholar

[38] A. Solbrand, A. Henningsson, S. Sodergren, H. Lindstrom, A. Hagfeldt, S. E. Lindquist: Journal of Physical Chemistry B Vol. 103 (1999), pp.1078-1083.

Google Scholar

[39] A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S. E. Lindquist, S. Sodergren: Journal of Physical Chemistry B Vol. 101 (1997), pp.2514-2518.

Google Scholar

[40] N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank: Journal of Physical Chemistry B Vol. 103 (1999), pp.3308-3314.

Google Scholar

[41] G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank: Journal of Physical Chemistry B Vol. 101 (1997), pp.8141-8155.

Google Scholar

[42] C. P. Hsu, K. M. Lee, J. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai, K. C. Ho: Electrochimica Acta Vol. 53 (2008), pp.7514-7522.

Google Scholar

[43] Y. Jun, M. G. Kang: Journal of the Electrochemical Society Vol. 154 (2007), p. B68-B71.

Google Scholar

[44] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida: Journal of Physical Chemistry B Vol. 107 (2003), pp.8607-8611.

Google Scholar

[45] K. J. Kim, K. D. Benkstein, J. van de Lagemaat, A. J. Frank: Chemistry of Materials Vol. 14 (2002), pp.1042-1047.

Google Scholar

[46] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida: Journal of Physical Chemistry B Vol. 106 (2002), pp.10004-10010.

DOI: 10.1021/jp020051d

Google Scholar

[47] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank: Journal of Physical Chemistry B Vol. 107 (2003), pp.11307-11315.

DOI: 10.1021/jp0304475

Google Scholar

[48] N. Kopidakis, N. R. Neale, A. J. Frank: Journal of Physical Chemistry B Vol. 110 (2006), pp.12485-12489.

Google Scholar

[49] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt: Solar Energy Materials and Solar Cells Vol. 87 (2005), pp.117-131.

DOI: 10.1016/j.solmat.2004.07.017

Google Scholar

[50] J. Bisquert: Physical Chemistry Chemical Physics Vol. 5 (2003), pp.5360-5364.

Google Scholar

[51] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. B. Kuang, S. M. Zakeeruddin, M. Gratzel: Jourmal of Physical Chemistry C Vol. 111 (2007), pp.6550-6560.

DOI: 10.1021/jp066178a

Google Scholar

[52] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther: Electrochimica Acta Vol. 47 (2002), pp.4213-4225.

DOI: 10.1016/s0013-4686(02)00444-9

Google Scholar

[53] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda: Journal of Physcial Chemistry B Vol. 110 (2006), pp.13872-13880.

Google Scholar

[54] P. Wang, S. M. Zakeeruddin, M. Gratzel: Journal of Fluorine Chemistry Vol. 125 (2004), pp.1241-1245.

Google Scholar