Porphyrins as Potential Sensitizers for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. So far ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO2 sensitizers in dye-sensitized solar cells. However, the highest power conversion efficiency has been stagnated in recent years. More importantly, considering that ruthenium is rare and expensive, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. To fulfill the requirement, it is crucial to develop inexpensive novel dyes that exhibit high efficiencies in terms of light-harvesting, charge separation, and charge collection. Porphyrins are important classes of potential sensitizers for highly efficient dye-sensitized solar cells owing to their photostability and potentially high light-harvesting capabilities that would allow applications in thinner, low-cost dye-sensitized solar cells. However, typical porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm, which does not match solar energy distribution on the earth. Therefore, the unmatched light-harvesting property relative to the ruthenium complexes has limited the cell performance of porphyrin-sensitized TiO2 cells. Elongation of the -conjugation and loss of symmetry in porphyrins cause broadening and red-shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved remarkably by the enhanced light absorption. The efficiency of porphyrin-sensitized solar cells could be improved significantly if the dyes with larger red and near-infrared absorption could be developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-40

Citation:

Online since:

November 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] (a) D. F. Watsonson and G. J. Meyer: Ann. Rev. Phys. Chem. Vol. 56 (2005).

Google Scholar

[2] (a) A. Hagfeldt and M. Grätzel: Acc. Chem. Res. Vol. 33 (2000), p.269. (b) M. Grätzel: Inorg. Chem. Vol. 44 (2005), p.6841.

Google Scholar

[3] (a) S. Ferrere and B. A. Gregg: J. Phys. Chem. B Vol. 105 (2001).

Google Scholar

[4] (a) B. Tan and Y. Wu: J. Phys. Chem. B Vol. 110 (2006).

Google Scholar

[5] D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin and M. Grätzel: J. Am. Chem. Soc. Vol. 128 (2006), p.7732.

Google Scholar

[6] (a) Y. Wang, K. Yang, S. -C. Kim, R. Nagarajan, L. A. Samuelson and J. Kumar: Chem. Mater. Vol. 18 (2006).

Google Scholar

[7] (a) K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa: J. Phys. Chem. B Vol. 107 (2003).

DOI: 10.1021/jp026963x

Google Scholar

[8] (a) E. Galoppini: Coord. Chem. Rev. Vol. 248 (2004).

Google Scholar

[9] S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon and R. D. Wright: Nature Vol. 280 (1979), p.571.

DOI: 10.1038/280571a0

Google Scholar

[10] (a) A. Fillinger and B. A. Parkinson: J. Electrochem. Soc. Vol. 146 (1999).

Google Scholar

[11] (a) H. Park, E. Bae, J. -J. Lee, J. Park and W. Choi: J. Phys. Chem. B Vol 110 (2006).

Google Scholar

[12] N. A. Anderson, X. Ai, D. Chen, D. L. Mohler and T. Lian: J. Phys. Chem. B Vol. 107 (2003), p.14231.

Google Scholar

[13] O. Taratula, J. Rochford, P. Piotrowiak, E. Galoppini, R. A. Carlisle and G. J. Meyer: J. Phys. Chem. B Vol. 110 (2006), p.15734.

DOI: 10.1021/jp0623847

Google Scholar

[14] D. Gust, T. A. Moore and A. L. Moore: Acc. Chem. Res. Vol. 34 (2001), p.40.

Google Scholar

[15] D. M. Guldi: Chem. Soc. Rev. Vol. 31 (2002), p.22.

Google Scholar

[16] M. R. Wasielewski: J. Org. Chem. Vol. 71 (2006), p.5051.

Google Scholar

[17] (a) H. Imahori and Y. Sakata: Adv. Mater. Vol. 9 (1997).

Google Scholar

[18] A. Kay and M. Grätzel: J. Phys. Chem. Vol. 97 (1993), p.6272.

Google Scholar

[19] S. Cherian and C. C. Wamser: J. Phys. Chem. B Vol. 104 (2000), p.3624.

Google Scholar

[20] D. F. Watson, A. Marton, A. M. Stux and G. J. Meyer: J. Phys. Chem. B Vol. 108 (2004), p.11680.

Google Scholar

[21] W. M. Campbell, A. K. Burrell, D. L. Officer and K. W. Jolley: Coord. Chem. Rev. Vol. 248 (2004), p.1363.

Google Scholar

[22] H. Imahori, S. Hayashi, H. Hayshi, A. Oguro, S. Eu, T. Umeyama and Y. Matano: J. Phys. Chem. C Vol. 113 (2009), 18406.

Google Scholar

[23] Q. Wang, W. M. Campbell, E. E. Bomfantani, K. W. Jolley, D. L. Officier, P. J. Walsh, K. Gordon, R. Humphery-Baker, M. K. Nazeeruddin and M. Grätzel: J. Phys. Chem. B Vol. 109 (2005), p.15397.

Google Scholar

[24] W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel and D. L. Officer: J. Phys. Chem. C Vol. 111 (2007), p.11760.

DOI: 10.1021/jp0750598

Google Scholar

[25] S. Eu, S. Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano and H. Imahori: J. Phys. Chem. C Vol. 111 (2007), p.3528.

DOI: 10.1021/jp067290b

Google Scholar

[26] M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano and H. Imahori: Chem. Commun. (2007), p. (2069).

Google Scholar

[27] S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama, Y. Matano, Y. Araki and H. Imahori: J. Phys. Chem. C Vol. 112 (2008), p.15576.

DOI: 10.1021/jp805122z

Google Scholar

[28] S. Hayashi, Y. Matsubara, S. Eu, H. Hayashi, T. Umeyama, Y. Matano and H. Imahori: Chem. Lett. Vol. 37 (2008), p.846.

DOI: 10.1246/cl.2008.846

Google Scholar

[29] S. Eu, S. Hayashi, T. Umeyama, Y. Matano, Y. Araki and H. Imahori: J. Phys. Chem. C Vol. 112 (2008), p.4396.

Google Scholar

[30] A. Kira, M. Tanaka, T. Umeyama, Y. Matano, G. Li, S. Ye, M. Isosomppi, N. V. Tkachenko, H. Lemmetyinen and H. Imahori: J. Phys. Chem. C Vol. 111 (2007), p.13618.

DOI: 10.1021/jp0726079

Google Scholar

[31] J. Rochford, D. Chu, A. Hagfeldt and E. Galoppini: J. Am. Chem. Soc. Vol. 129 (2007), p.4655.

Google Scholar

[32] J. R. Stromberg, A. Marton, H. L. Kee, C. Kirmaier, J. R. Diers, C. Muthiah, M. Taniguchi, J. S. Lindsey, D. F. Bocian, G. J. Meyer and D. Holten: J. Phys. Chem. C Vol. 111 (2007), 15464.

DOI: 10.1021/jp0749928

Google Scholar

[33] F. Odobel, E. Blart, M. Lagrée, M. Villieras, H. Boujtita, N. El Murr, S. Caramori and C. A. Bignozzi: J. Mater. Chem. Vol 13. (2003), p.502.

DOI: 10.1039/b210674d

Google Scholar

[34] C. -W. Lee, H. -P. Lu, C. -M. Lan, Y. -L. Huang, Y. -R. Liang, W. -N. Yen, Y. -C. Liu, Y. -S. Lin, E. W. -G. Diau and , C. -Y. Yeh: Chem. Eur. J. Vol. 15 (2009), p.1403.

Google Scholar

[35] C. -Y. Lin, C. -F. Lo, L. Luo, H. -P. Lu, C. -S. Hung and E. W. -G. Diau: J. Phys. Chem. C Vol. 113 (2009), p.755.

Google Scholar

[36] J. K. Park, H. R. Lee, J. Chen, H. Shinokubo, A. Osuka and D. Kim: J. Phys. Chem. C Vol. 112 (2008), p.16691.

Google Scholar

[37] A. J. Mozer, M. J. Griffith, G. Tsekouras, P. Wagner, G. G. Wallace, S. Mori, K. Sunahara, M. Miyashita, J. C. Eares, K. C. Gordon, L. Du, R. Katoh, A. Furube and D. L. Officer: J. Am. Chem. Soc. Vol. 131 (2009), p.15621.

DOI: 10.1021/ja9057713

Google Scholar

[38] Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao and S. Tan: Chem. Commun. (2009), p.2499.

Google Scholar