Investigation of PEO-Imidazole Ionic Liquid Oligomer and Polymer Electrolytes for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Ionic liquid oligomer, 1-oligo(ethyleneoxide)-3-methylimidazolium salt (PEO(X)MIm) and Ionic liquid polymer, poly(1-oligo (ethylene glycol) methacrylate-3-methylimidazolium) salt (P(MOEMIm)) prepared by incorporating imidazolium ionic liquid with PEO oligomer and polymer were investigated as electrolytes for dye-sensitized solar cells (DSCs). Ionic liquid electrolytes were composed of LiI, I2, and PEO(X)MImCl or the mixture of 1-hexyl-3-methylidazolium iodide (HMImI), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) and PEO(X)MImCl. Quasi-solid-state electrolytes were prepared by employing the imidazole polymers P(MOEMImCl) to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. Ionic liquid based quasi-solid state electrolytes were prepared by solidifying the ionic liquid electrolytes containing HMImI or a binary mixture of HMImI and EMImBF4 with an ionic liquid polymer P(MOEMImCl), respectively. The influences of PEO molecular weight, polymer content, addition of alkyl ionic liquid and various anions of the ionic liquid oligomers and polymer on the ionic conductivity, apparent diffusion coefficient of the redox species in the electrolytes and the performance of solar cells were examined. The influences on the kinetic behaviors of dye regeneration and triiodide reduction reactions taken place at nanocrystalline TiO2 electrode and Pt counter-electrode, respectively, were also studied by cyclic-voltammetry and electrochemical impedance spectroscopy measurements. By using ternary ionic liquid electrolyte containing 1M lithium iodide and 0.5M iodine in the ionic liquid of the ionic liquid mixture of PEO(X)MImCl), HMImI and EMImBF4, quasi-solid-state electrolytes and ionic liquid based quasi-solid state electrolytes the photoelectron conversion efficiency of DSCs is 7.89%, 7.6% and 6.1%, respectively(AM 1.5, 100mWcm−2). These results show the potential application of PEO based ionic liquid in SCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-61

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Hagfeldt, M. Grätzel: Chem. Rev. Vol. 95 (1995), pp.49-68.

Google Scholar

[2] B. O'. Regan, M. Grätzel: Nature Vol. 353 (1991), pp.737-739.

Google Scholar

[3] M. Grätzel: Nature Vol. 414 (2001), pp.338-344.

Google Scholar

[4] A. F. Nogueria, J. R. Durrant, M. A. Depaoli: Adv. Mater. Vol. 13 (2001), p.826.

Google Scholar

[5] A. F. Nogueria, M. A. Depaoli, I. Montanari, R. Monkhouse, J. Nelson, J. R. Durrant: J. Phys. Chem. B Vol. 105 (2001), p.7517.

Google Scholar

[6] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, P. Falaras: Nano Lett. Vol. 2 (2002), p.1259.

Google Scholar

[7] G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki: J. Photochem. Photobio. A: Chem. Vol. 149 (2002), p.191.

Google Scholar

[8] P. Wang, S. M. Zakeeruddin, M. Grätzel: J. Fluorine. Chem. Vol. 125 (2004), p.1241.

Google Scholar

[9] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Grätzel: Chem. Commun. (2002), pp.2972-2973.

Google Scholar

[10] K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe, S. Yanagida: J. Photochem. Photobio. A: Chem. Vol. 164 (2004), pp.81-85.

Google Scholar

[11] S. Sakaguchi, H. Ueki, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, S. Hayase: J. Photochem. Photobio. A: Chem. 164 (2004) 117-122.

DOI: 10.1016/j.jphotochem.2003.11.014

Google Scholar

[12] R. Komiya, L. Han, R. Yamanaka, A. Islam, T. Mitate, J. Photochem. Photobio. A: Chem. 164 (2004) 123-127.

Google Scholar

[13] M. Biancardo, K. West, F. C. Krebs, Sol. Energy Mater. Sol. Cells 90 (2006) 2575- 2588.

Google Scholar

[14] J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Wei, S. Yin, T. Sato, J. Photochem. Photobio. A: Chem. 182 (2006) 333-337.

Google Scholar

[15] E. Stathatos, P. Lianos, S. M. Zakeeruddin, P. Liska, M. Grätzel: Chem. Mater. Vol. 15 (2003), pp.1825-1829.

DOI: 10.1021/cm0213568

Google Scholar

[16] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel: J. Am. Chem. Soc. Vol. 125 (2003), pp.1166-1167.

Google Scholar

[17] P. Wang, S. M. Zakeeruddin, M. Grätzel: J. Fluorine. Chem. Vol. 125 (2004), pp.1241-1245.

Google Scholar

[18] X. Zhang, H. Yang, H. M. Xiong, F. Y. Li, Y. Y. Xia: J. Power Science Vol. 160 (2006), p.1451.

Google Scholar

[19] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel: J. Electrochem. Soc. Vol. 143 (1996), pp.3099-3108.

DOI: 10.1149/1.1837171

Google Scholar

[20] P. Wang, S. M. Zakeeruddin, R. H. Baker, M. Grätzel: Chem. Mater. Vol. 16 (2004), p.2694.

Google Scholar

[21] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Grätzel: J. Phys. Chem. B. Vol. 107 (2003), p.13280.

Google Scholar

[22] W. Kubo, Y. Makimoto, T. Kitamura, Y. Wada, S. Yanagida: Chem. Lett. (2002), pp.948-949.

Google Scholar

[23] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida: J. Phys. Chem. B. Vol. 107 (2003), pp.4374-4381.

DOI: 10.1021/jp034248x

Google Scholar

[24] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel: J. Electrochem. Soc. Vol. 143 (1996), pp.3099-3108.

DOI: 10.1149/1.1837171

Google Scholar

[25] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida: Chem. Commun. (2002), p.374375.

Google Scholar

[26] S. Murai, S. Mikushiba, H. Sumina,T. Kato, S. Hayase: Chem. Commun. (2003), pp.1534-1535.

Google Scholar

[27] P. Bonhote, A-P Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel: Inorg. Chem. Vol. 35 (1996), pp.1168-1178.

Google Scholar

[28] P. Wang, S. M. Zakeeruddin, J-E Moser, R. Humphry-Baker, M. Grätzel: J. Am. Chem. Soc. Vol. 126 (2004), pp.7164-7165.

Google Scholar

[29] R. Kawano, H. Matsui, C. Matsuyama, A. Sato. M. A. B. H. Susan, N. Tanabe, M. Watanabe: J. Photochem. Photobio. A: Chemistry Vol. 164 (2004), pp.87-92.

Google Scholar

[30] P. Wang, B. Wenger, R. H. Baker, J-E Moser, J. Teuscher, W. Kantlehner, J. Mezger, E.V. Stoyanov, S. M. Zakeeruddin, M. Grätzel: J. Am. Chem. Soc. Vol. 127 (2005), pp.6850-6856.

DOI: 10.1021/ja042232u

Google Scholar

[31] H. Ohno: Electrochim Acta Vol. 46 (2001), pp.1407-1411.

Google Scholar

[32] M. Yoshizawa, H. Ohno: Chem. Lett. (1999), pp.889-890.

Google Scholar

[33] M. Hirao, K. Ito, H. Ohno: Electrochimica Acta Vol. 45 (2000), pp.1291-1294.

Google Scholar

[34] M. Yoshizawa, H. Ohno: Electrochimica Acta Vol. 46 (2001), pp.1723-1728.

Google Scholar

[35] S. Zalipsky, C. Gilon, and A. Zilkha: Eur. Polym. J. Vol. 19 (1983), pp.1177-1183.

Google Scholar

[36] Y. Nakai, K. Ito, H. Ohno: Solid State Ionics. Vol. 113-115 (1998), pp.199-204.

Google Scholar

[37] T. Nishida, Y. Tashiro, M. Yamamoto: J. Fluorine. Chem. Vol. 120 (2003), pp.135-141.

Google Scholar

[38] G. Q. Wang, X. W. Zhou, M. Y. Li, J. B. Zhang, J. J. Kang, Y. Lin, S. B. Fang, X. R. Xiao: Materials Research Bulletin Vol. 39 (2004), pp.2113-2118.

Google Scholar

[39] B. M. Quinn, Z. Ding, R. Moulton, A. J. Bard: Langmuir Vol. 18 (2002), pp.1734-1742.

Google Scholar

[40] M. K. Nazeeruddin, A, Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel: J. Am. Chem. Soc. Vol. 115 (1993), pp.6382-6390.

DOI: 10.1021/ja00067a063

Google Scholar

[41] A. Hauch, A. Georg: Electrochimica Acta Vol. 46 (2001), pp.3457-3466.

Google Scholar

[42] N. Papageorgin, W. F. Maier, M. Grätzel: J. Chem. Soc. Vol. 144 (1997), pp.876-884.

Google Scholar

[43] A. Kumer, P. G. Santangelo, N. S. Lewis: J. Phys. Chem. Vol. 96 (1992), pp.835-842.

Google Scholar

[44] T. Asano, T. Kubo, Y. Nishikitani: J. Photochem. Photobio. A: Chem. Vol. 164 (2004), p.111.

Google Scholar

[45] P.M. Sommeling, M. Sp¨ath, H.J.P. Smit, N.J. Bakker, J.M. Kroon: J. Photochem. Photobiol. A: Chem. Vol. 164 (2004), pp.137-144.

Google Scholar