Design and Fabrication of Novel Photonic Crystal Waveguide Consisting of Si-Ion Implanted SiO2 Layers

Article Preview

Abstract:

In this paper, we designed and fabricated two-dimensional photonic crystal (2-D PhC) consisting of the silicon ion (Si-ion) implanted silicon dioxide (SiO2) layers. The PhC design parameters based on the telecommunication wavelength (λ=1.55 µm) were obtained using finite-difference time-domain (FDTD) method. By analyzing the samples fabricated using different fabrication approach; we found a suitable fabrication method for 2-D PhCs based on the Si-ion implanted SiO2 layers. We have analyzed the fabricated sample using atomic force microscope (AFM) and annealing temperature and time were optimized in order to recover the damage done by Si-ion implantation. The implantation of Si-ion into SiO2 with the process of 2-D PhCs structure can effectively guide light inside such structure, which can easily be integrated into the existing silicon technology for directing light from one part of the chip to the other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-172

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yablonovitch: Phys. Rev. Lett. Vol. 58 (1987). p. (2059).

Google Scholar

[2] S. John: Phys. Rev. Lett. Vol. 58 (1987). p.2486.

Google Scholar

[3] J. D. Joannopoulos R. D. Meade and J. N. Winn: Photonic Crystals : Molding the flow of Light, Second edition (Princeton NJ: Princeton University Press, 2008).

DOI: 10.2307/j.ctvcm4gz9

Google Scholar

[4] O. Hanaizumi K. Ono Y. Ogawa and T. Matsumoto: Appl. Phys. Lett. Vol. 84 (2004). p.3843.

Google Scholar

[5] N. Fukaya D. Oshaki and T. Baba: Jpn. J. Appl. Phys. Vol. 39 (2000). p.2619.

Google Scholar

[6] M. Loncar T. Doll J. Vuckovic and A. Scherer: IEEE J. Lightw. Technol. Vol. 18 (2000). p.1402.

Google Scholar

[7] A. Mekis J. C. Chen I. Kurland S. Fan P. R. Villeneuve and J. D. Joannopoulos: Phys. Rev. Let. Vol. 77 (1996). p.3787.

Google Scholar

[8] L. Pavesi L.D. Negro C. Mazzoleni G. Franzo and F. Priolo: Nature Vol. 408 (2000). p.440.

Google Scholar

[9] K. Miura T. Tanemura O. Hanaizumi S. Yamamoto K. Takano M. Sugimoto and M. Yoshikawa: Nucl. Instr. and Meth. B Vol. 263 (2007). p.532.

Google Scholar

[10] J.F. Ziegler J.P. Biersack U. Littmark: The Stopping and Range of Ion in Solids (Pergamon, New York 1985).

Google Scholar

[11] A. V. Umenyi K. Miura and O. Hanaizumi: IEEE J. Lightw. Technol. Vol. 27 (2009). p.4995.

Google Scholar

[12] H.J. Kang S.H. Ahn J.S. Lee and J.H. Lee: Int. J. Prec. Eng. and Manuf. Vol. 7 (2006). p.1.

Google Scholar

[13] S. Sienz B. Rauschenbach A. Wenzel A. Lell S. Bader and V. Harle: Thin Solid Films Vol. 415 (2002). p.1.

DOI: 10.1016/s0040-6090(02)00620-x

Google Scholar