Theoretical Analysis of Photonic Band Gaps and Defect Modes of Novel Photonic Crystal Waveguides Consisting of Si-Ion Implanted SiO2 Using the Finite-Difference Time-Domain Method

Abstract:

Article Preview

In this paper, photonic crystals (PC) based on 2-D periodic arrays of air holes were investigated on Si-ion implanted SiO2 using finite-difference time-domain (FDTD) simulations. The PC design parameters based on the telecommunication wavelength (λ=1.55 µm) were obtained by varying the radius to lattice constant ratio (r/a) from 0.2 to 0.45. We analyzed both transverse electric (TE) and transverse magnetic (TM) mode propagation in triangular-lattice PCs. The result obtained shows that a PC bandgap (PBG) exists for TE-mode propagation in the Si-ion implanted SiO2 patterned 2-D triangular lattice of air holes. We have also calculated the dispersion relations for the TE mode of a line defect in the structure and shown a fabricated sample. These analyses are obviously important for fabricating novel PC waveguides, which can easily be integrated into the existing silicon technology for directing light from one part of a chip to the other.

Info:

Periodical:

Edited by:

Osamu Hanaizumi and Masafumi Unno

Pages:

162-167

DOI:

10.4028/www.scientific.net/KEM.459.162

Citation:

A. V. Umenyi et al., "Theoretical Analysis of Photonic Band Gaps and Defect Modes of Novel Photonic Crystal Waveguides Consisting of Si-Ion Implanted SiO2 Using the Finite-Difference Time-Domain Method", Key Engineering Materials, Vol. 459, pp. 162-167, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.