Large Resistance Ratio for High Reliability of Multi-Level Storage in Phase-Change Memory

Article Preview

Abstract:

Reliability (or stability) of multi-level storage (MLS) is the critical characteristics for multi-level cells. In order to improve reliability of MLS of phase-change memory, there are two effective approaches, (i) enlargement of the ratio between resistance levels and (ii) reduction of scattering of resistance level. On the basis of our experimental results, it is demonstrated that the Ge2Sb2Te5-based double-layered cell has a high ratio of highest to lowest levels up to two-to-three orders of magnitude, implying high reliability. The cells exhibit the possibility of stable switching for four-level storage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-144

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Lai: Tech. Dig. IEDM, 2003, p.255.

Google Scholar

[2] Y. Yin, D. Niida, K. Ota, H. Sone and S. Hosaka: Rev. Sci. Instrum. Vol. 78 (2007), p.126101.

Google Scholar

[3] D. Ielmini: Microelectron. Eng. Vol. 86 (2009), p.1870.

Google Scholar

[4] Y. Hamada, T. Kijima, H. Miyazawa and T. Shimoda: Jpn. J. Appl. Phys. Vol. 44 (2005), p.6895.

Google Scholar

[5] N. Menou, H. Kuwabara and H. Funakubo: Jpn. J. Appl. Phys. Vol. 46 (2007), p.2139.

Google Scholar

[6] H. Miyatake, T. Sunaga, H. Umezaki and H. Asano: IEEE Trans. Magn. Vol. 40 (2004), p.1723.

Google Scholar

[7] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki and K. Ando: Appl. Phys. Lett. Vol. 86 (2005), p.092502.

DOI: 10.1063/1.1871344

Google Scholar

[8] K. Nakayama, K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa and M. Suzuki: Jpn. J. Appl. Phys. Vol. 39 (2000) , p.6157.

Google Scholar

[9] Y. Yin, H. Sone and S. Hosaka: Microelectron. Eng. Vol. 84 (2007), p.2901.

Google Scholar

[10] F. Rao, Z. Song, M. Zhong, L. Wu, G. Feng, B. Liu, S. Feng and B. Chen: Jpn. J. Appl. Phys. Vol. 46 (2007) , p. L25.

Google Scholar

[11] D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb and K. W. Yi: J. Appl. Phys. Vol. 94 (2003), p.3536.

Google Scholar

[12] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 45 (2006), p.8600.

Google Scholar

[13] Y. Yin, H. Sone and S. Hosaka: J. Appl. Phys. Vol. 102 (2007), p.064503.

Google Scholar

[14] F. Rao, Z. Song, L. Wu, Y. Gong, S. Feng and B. Chen: Solid-State Electronics, Vol. 53 (2009), p.276.

Google Scholar

[15] R. Waser and M. Aono: Nat. Mater. Vol. 6 (2007), p.833.

Google Scholar

[16] S. Baek, D. Lee, J. Kim, S. Hong, O. Kim and M. Ree: Adv. Funct. Mater. Vol. 17 (2007), p.2637.

Google Scholar

[17] Y. Yin, N. Higano, H. Sone and S. Hosaka: Appl. Phys. Lett. Vol. 92 (2008), p.163509.

Google Scholar

[18] I. Friedrish, V. Weidenhof, W. Njoroge, P. Franz and M. Wuttig: J. Appl. Phys. Vol. 87 (2000), p.4130.

Google Scholar

[19] Y. Yin, T. Noguchi, H. Ohno and S. Hosaka: Appl. Phys. Lett. Vol. 95 (2009), p.133503.

Google Scholar

[20] M. Terao, T. Morikawa and T. Ohta: Jpn. J. Appl. Phys. Vol. 48 (2009), p.080001.

Google Scholar