Effect of Organometallic Compounds on the Formation of Carbon Nanostructures by Pulsed Electric Discharge of Fluorine-Containing Organic Liquid between Metal Electrodes

Article Preview

Abstract:

The carbon nanotube and carbon nanoparticle that contain fluorine on their surfaces were prepared by a pulsed electric discharge in a fluorine-containing organic liquid. The dominant product was nanoparticles with the diameters of ca. 5–100 nm in all experiments, however, the intensity ratio of G-band (1580 cm-1) to D-band (1350 cm-1) of the Raman spectrum of the products increased by addition of a catalyst indicating the formation of crystalline particles. The product formation rate also increased to 39.3 mg/A•s with ferrocene and 79.4 mg/A•s with nickelocene while with no catalyst it resulted in 12.5 mg/A•s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-70

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. W. Kroto, J. R. Heath, S. C. O. O'Brien, R. R. Curl, R. E. Smally: Nature Vol. 318 (1985), p.152.

Google Scholar

[2] S. Iijima, Nature Vol. 354 (1991), p.56.

Google Scholar

[3] S. Iijima, T. Ichihashi: Nature Vol. 363 (1993), p.603.

Google Scholar

[4] S. Iijima, M. Yudasaka, R. Yamada, Bandow S, K. Suenaga, F. Kokai, K. Takahashi: Chem. Phys. Lett. Vol. 309 (1999), p.165.

DOI: 10.1016/s0009-2614(99)00642-9

Google Scholar

[5] D. Ugarte: Nature Vol. 359 (1992), p.707.

Google Scholar

[6] R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Science Vol. 259 (1993), p.346.

Google Scholar

[7] E. Ebbesen, K. Murata, M. Yudasaka, D. Kasuya, S. Iijima, H. Tanaka, H. Kahoh, K. Kaneko: J. Phys. Chem. B Vol. 107 (2003), p.4681.

DOI: 10.1021/jp0278263

Google Scholar

[8] L-C Qin, X Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima: Nature Vol. 408 (2000), p.50.

Google Scholar

[9] M. Endo, T. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto: J. Phys. Chem. Solids Vol. 54 (1993), p.1841.

Google Scholar

[10] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus: Appl. Phys. Lett. Vol. 72 (1998), p.3282.

Google Scholar

[11] D. Hulicova, K. Hosoi, S. Kuroda, H. Abe, A. Oya: Adv. Mater. Vol. 14 (2002), p.452.

Google Scholar

[12] D. Hulicova, K. Hosoi, S. Kuroda, H. Abe, A. Oya: Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals Vol. 387 (2002), p.107.

DOI: 10.1080/10587250215241

Google Scholar

[13] D. Hulicova, K. Hosoi, S. Kuroda, A. Oya: Carbon Vol. 43 (2005), p.1246.

Google Scholar

[14] M. Ishigami, J. Cumings, A. Zettl, S. Chen: Chem. Phys. Lett. Vol. 319 (2000), p.457.

Google Scholar

[15] N. Sano, H. Weng, M. Chhowalla, I. Alexandrou, G. A. J. Amratunga: Nature Vol. 414 (2001), p.506.

Google Scholar

[16] N. Sano, H. Weng, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amratunga, K. Iimura: J. Appl. Phys. Vol. 92 (2002), p.2783.

Google Scholar

[17] N. Sano: Mater. Chem. Phys. Vol. 88 (2004), p.235.

Google Scholar

[18] Vladislav A. Ryzhkov: Physica B Vol. 323 (2002), p.324.

Google Scholar

[19] K. Hosoi, S. Kuroda, H. Kubota: Chem. Lett. Vol. 37 (2008), p.54.

Google Scholar

[20] E. T. Mickelson, I. W. Chiang, J. L. Margrave: J. Phys. Chem. B Vol. 103 (1999), p.4318.

Google Scholar