Cyclic Behavior of Electrical Resistance Type Low Stiffness, Large Strain Sensor by Using Carbon Nanofiber/Flexible Epoxy Composite

Article Preview

Abstract:

Carbon nanofiber (CNF) has good electrical conductivity. Addition of a few percentages of carbon nanofiber to polymer yields electrical conductivity but hardly affects the mechanical properties of polymer. This conductive polymer may be useful for sensing applications such as strain sensors and chem-resist sensors. Many researchers have reported on the electrical conductivity, but the electrical resistance change under strain of the carbon nanofiller composites is not fully investigated. In this study, the electrical resistance change under strain of CNF/flexible-epoxy composites was investigated experimentally. More than 100% of quasi-static strain can be measured by using CNF/flexible-epoxy composite with Young’s modulus of less than 1MPa. Cyclic and unloading behaviors were also measured and discussed. It was found that the cyclic behavior was strongly affected by viscoelasticity and damage.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Pages:

1200-1205

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Katsumata, H. Yamanashi, H. Ushijima, and M. Endo: Electrical Engineering in Japan Vol. 114, No. 5 (1994), pp.17-23.

Google Scholar

[2] S. A. Gordeyev, F. J. Macedo, J. A. Ferreira, F. W. J. van Hattum, and C.A. Bernardo: Physica B Vol. 279 (2000), pp.33-36.

DOI: 10.1016/s0921-4526(99)00660-2

Google Scholar

[3] I. C. Finegan, G. G. Tibbetts: J. Mater. Res. Vol. 16 (2001), pp.1668-1674.

Google Scholar

[4] J. M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, O. Chauvet: Synth. Met. Vol. 121 (2001), pp.1215-1216.

DOI: 10.1016/s0379-6779(00)00838-9

Google Scholar

[5] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hultzler, S. Roth, and W. J. Blau: J. Appl. Phys. Vol. 92 (2002), pp.4024-4030.

DOI: 10.1063/1.1506397

Google Scholar

[6] K. Enomoto, T. Yasuhara, N. Ohtake, K. Kato: JSME International Journal, Series A Vol. 46 (2003), pp.353-358.

Google Scholar

[7] F. Du, J. E. Fischer, and K. I. Winey: Phys. Rev. B Vol. 72 (2005), p.121404.

Google Scholar

[8] M. Katsumata, M. Endo, H. Ushijima: J. Mater. Res. Vol. 9, No. 4 (1994), pp.841-843.

Google Scholar

[9] J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle: Polymer Vol. 40 (1999), pp.5967-5971.

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[10] S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne: Macromolecules Vol. 36 (2003), pp.5187-5194.

DOI: 10.1021/ma021263b

Google Scholar

[11] J. M. Park, D. S. Kim, J. R. Lee and T. W. Kim: Mater. Sci. Eng. C Vol. 23 (2003), pp.971-975.

Google Scholar

[12] S. H. Wu, N. Toshiaki, K. Kurashiki, Q. Q. Ni, M. Iwamoto, and Y. Fujii: Adv. Compost. Mater. Vol. 16, No. 3 (2007), pp.195-126.

Google Scholar

[13] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga: Acta Mater. Vol. 56 (2008), pp.2929-2936.

Google Scholar

[14] T. Yasuoka, Y. Shimamura, and A. Todoroki: Adv. Compost. Mater. Vol. 19, No. 2 (2010), pp.123-138.

Google Scholar