Influence of Slip Localization on Surface Relief Formation and Grain Boundary Microcrack Nucleation

Article Preview

Abstract:

Slip localization is often observed in metallic polycrystals after cyclic deformation (persistent slip bands) or pre-irradiation followed by tensile deformation (channels). To evaluate its influence on surface relief formation and grain boundary microcrack nucleation, crystalline finite element (FE) computations are carried out using microstructure inputs (slip band aspect ratio/spacing). Slip bands (low critical resolved shear stress (CRSS)) are embedded in small elastic aggregates. Slip band aspect ratio and neighboring grain orientations influence strongly the surface slips. But only a weak effect of slip band CRSS, spacing and grain boundary orientation is observed. Analytical formulae are deduced which allow an easy prediction of the surface and bulk slips. The computed slips are in agreement with experimental measures (AFM/TEM measures on pre-irradiated austenitic stainless steels and nickel, copper and precipitate-strengthened alloy subjected to cyclic loading). Grain boundary normal stresses are computed for various materials and loading conditions. A square root dependence with respect to the distance to the slip band corner is found similarly to the pile-up stress field. But the equivalent stress intensity factor is considerably lower. Analytical formulae are proposed for predicting the grain boundary normal stress field depending on the microstructure lengths. Finally, an energy balance criterion is applied using the equivalent elastic energy release rate and the surface/grain boundary energies. The predicted macroscopic stresses for microcrack nucleation are compared to the experimental ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.V. Sharp: Phil. Mag. Vol. 16 (1967) p.77.

Google Scholar

[2] D.J. Edwards, B.N. Singh and J.B. Bikde-Sorensen: J. Nucl. Mat. Vol. 342 (2005) p.164.

Google Scholar

[3] Z. Jiao, J.T. Busby and G.S. Was: J. Nucl. Mater. Vol. 361 (2007) p.218.

Google Scholar

[4] T.S. Byun, N. Hashimoto and K. Farrell: J. Nucl. Mat. Vol. 351 (2006) p.303.

Google Scholar

[5] P. Lukas, M. Knesnil and J. Krejci: Phys. Stat. Sol. Vol. 27 (1968) p.545.

Google Scholar

[6] J.M. Finney and C. Laird: Phil. Mag. Vol. 31 (1975) p.339.

Google Scholar

[7] Ch. Blochwitz and U. Veit: Crystal Res. & Technol. Vol. 17 (1982) p.529.

Google Scholar

[8] L.C. Lim and R. Raj: Acta Metall. Vol. 32 (1984) p.1183.

Google Scholar

[9] J. Man, K. Obrtlik, Ch. Blochwitz and J. Polak: Acta Mat. Vol. 50 (2002) p.3767.

Google Scholar

[10] C. Wejdemann and O.B. Pedersen: Mat. Sci. Eng. A Vol. 387 (2004) p.556.

Google Scholar

[11] E.H. Lee, M.H. Yoo, T.S. Byun, J.D. Hunn, K. Farrell and L.K. Mansur: Acta. Mater. Vol. 49 (2001) p.3277.

Google Scholar

[12] V. Gerold: Scripta Metall. Vol. 16 (1982) p.405.

Google Scholar

[13] K.V. Rasmussen and O.B. Pedersen: Acta Met. Vol. 14 (1980) p.1467.

Google Scholar

[14] J.D. Eshelby: Proc. R. Soc. Lond. A Vol. 241 (1957) p.76.

Google Scholar

[15] E.A. Repetto and M. Ortiz: Acta Mater. Vol. 45 (1997) p.2577.

Google Scholar

[16] M. Sauzay and P. Gilormini: Th. Appl. Fract. Mech. Vol. 38 (2002) p.53.

Google Scholar

[17] M. Sauzay, Ch. Caës, M. Mottot and Ch. Robertson: J. Phys. IV Vol. 106 (2003) p.99.

Google Scholar

[18] W. Liu, M. Bayerlein, H. Mughrabi, A. Day and P.N. Quested: Acta Metall. Mater. Vol. 40 (1992) p.1763.

Google Scholar

[19] L.C. Lim and R. Raj: Acta Metall. Vol. 32 (1984) p.1177.

Google Scholar

[20] E.P. Simonen and S.M. Bruemmer, in: 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, edited by A.R. McIllree and S.M. Bruemmer National Association of Corrosion Engineers, Houston, TX Vol. 2 (1995).

DOI: 10.1002/9781118787618.ch105

Google Scholar

[21] A. Toivonen, U. Ehrnsten, W. Karlsen, P. Aaltonen, J. -P. Massoud and J. -M. Boursier, in: 12th Int. Symposium on Environmental Degradation of Materials in Nuclear Power Systems/Water Reactors, edited by T.R. Allen, P.J. King and L. Nelson The Minerals, Metals & Materials Society (2005).

DOI: 10.1002/9781118456835.ch22

Google Scholar

[22] S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was and J.L. Nelson: J. Nucl. Mat. Vol. 274 (1999) p.299.

Google Scholar

[23] H. Margolin and M.S. Stanescu: Acta Met. Vol. 23 (1975) p.1411.

Google Scholar

[24] P. Neumann: Scripta Met. Mater. Vol. 26 (1992) p.1535.

Google Scholar

[25] O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud: Int. J. Plast. Vol. 21 (2005) p.691.

Google Scholar

[26] A.N. Stroh: Proc. Roy. Soc. Vol. 223 (1954) p.404.

Google Scholar

[27] K. Tanaka and T. Mura: J. appl. Mech. Vol. 103 (1981) p.97.

Google Scholar

[28] T. Tabata, H. Fujita, M. -A. Hiraoka, and K. Onishi: Phil. Mag. A Vol. 47 (1983) p.841.

Google Scholar

[29] M. Sauzay, K. Bavard and W. Karlsen: J. Nucl. Mater. available online (2010).

Google Scholar

[30] P. Evrard and M. Sauzay: J. Nucl. Mater. Accepted for publication (2010).

Google Scholar

[31] M. Sauzay and Th. Jourdan: Int. J. Fract. Vol. 141 (2006) p.431.

Google Scholar

[32] M. Savoie, PhD, Ecole des Mines de Saint-Etienne France.

Google Scholar

[33] A. Weidner, R. Beyer, C. Blochwitz, C. Holste, A. Schwab and W. Tirschler: Mater. Sci. Eng. A Vol. 435-436 (2006) p.540.

DOI: 10.1016/j.msea.2006.07.039

Google Scholar

[34] H. Mughrabi, R. Wang, K. Differt, U. Essmann, in: Fatigue mechanisms: advances in quantitative measurement of physical damage, edited by J. Lankford, D. L. Davidson, W. L. Morris and R. P. Wei ASTM STP 811 (1983), p.5.

DOI: 10.1520/stp811-eb

Google Scholar

[35] J. Polak and M. Sauzay: Mat. Sci. Eng. A Vol. 500 (2009) p.122.

Google Scholar