Geometrical Shielding Produced by Intergranular Crack-Tip Branching in Fe–V–P Alloy

Article Preview

Abstract:

The geometrical shielding produced by intergranular crack-tip branching in the fracture toughness tests of the Fe–V–P alloy is quantitatively assessed particularly with respect to the contribution of crack splitting. This process was evaluated by an identification of secondary intergranular cracks visualized on metalographical samples perpendicular to the fracture surface. The analysis of mixed trans/intergranular fracture revealed no special influence of triple-point branching (splitting) on the total crack tip shielding in cases of such highly spatially tortuous crack fronts. Thus, the previously reported results taking only the effect of crack tip kinking and meandering into account were proved to be correct.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

574-577

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Intermetalic Compounds, Vols. 1−3, J.H. Westbrook, R.L. Fleischer eds (Wiley, Chichester, 1995, 1996, 2002).

Google Scholar

[2] E.D. Hondros, M.P. Seah, S. Hofmann, P. Lejček: In: Physical Metallurgy, 4th ed., R.W. Cahn, P. Haasen eds (North-Holland, Amsterdam, 1996) p.1201.

DOI: 10.1016/b978-044489875-3/50018-1

Google Scholar

[3] D. Kalderon: Proc. Instn. Mech. Engr., 186 (1972) 341.

Google Scholar

[4] M. Godec, Dj. Mandrino, M. Jenko: Eng. Fract. Anal. 16 (2009) 1252.

Google Scholar

[5] P. Lejček, S. Hofmann: Crit. Rev. Sol. State Mater. Sci. 20 (1995) 1.

Google Scholar

[6] P. Lejček: Anal. Chim. Acta 297 (1994) 165.

Google Scholar

[7] P. Šandera et al.: Eng. Fract. Mech. 77 (2010) 385.

Google Scholar

[8] J. Pokluda, P. Šandera: Micromechanisms of Fracture and Fatigue in a Multiscale Context (Springer, in print 2010).

Google Scholar

[9] M.L. Jokl, V. Vitek, C.J. McMahon Jr.: Acta Metall 28 (1980) 1479.

Google Scholar

[10] A. Neimitz, E.C. Aifantis: Engng. Fract. Mech. 26 (1987) 505.

Google Scholar

[11] M. Kotoul, J. Pokluda, P. Šandera, I. Dlouhý, Z. Chlup, A.R. Boccacini: Acta Mater. 56 (2008) 2908.

DOI: 10.1016/j.actamat.2008.02.024

Google Scholar

[12] J. Pokluda, P. Šandera, J. Horníková: Fat. Fract. Engng Mater. Struct. 27 (2004) 141.

Google Scholar

[13] J. Janovec et al.: Mater. Sci. Forum 482 (2005) 191.

Google Scholar

[14] J. Janovec, P. Lejček, J. Pokluda, M. Jenko: Kovové Mater. 44 (2006) 81.

Google Scholar

[15] J. Janovec, J. Pokluda, P. Lejček: Mater. Sci. Forum 567–568 (2008) 33.

Google Scholar

[16] J. Janovec, M. Jenko, P. Lejček, J. Pokluda: Mater. Sci. Eng. A 462 (2007) 441.

Google Scholar

[17] J. Janovec et al.: Surf. Interface Anal. 38 (2006) 401.

Google Scholar

[18] Stress Intensity Factors Handbook: Vol 1, Y. Murakami ed (Pergamon Books, Amsterdam, 1987).

Google Scholar