An Improved Locally Linear Embedding Method for Feature Extraction

Article Preview

Abstract:

In this work, a feature extraction approach based on improved Locally Linear Embedding(LLE) is proposed. In the algorithm, tangent space distance is introduced to LLE, which overcomes the shortcoming of original LLE method based on Euclidean distance. It can satisfy the requirement of locally linear much better and so can express the I/O mapping quality better than classical method. Simulation results are given to demonstrate the effectiveness of the improved LLE method.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 467-469)

Pages:

487-492

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] PEARSON K. On lines and planes of closest fit to systems of points in space[J]. Philos Mag, 1901, 6(2): 559 - 572.

Google Scholar

[2] SAMUEL A L. Some studies in machine learning using the game of checkers[J]. IBM Journal Research and Development, 1967, 11(4 ): 601-617.

DOI: 10.1147/rd.116.0601

Google Scholar

[3] DUNIA R, QIN S Joe, EDGAR T F, MCAVOY T J. Use of principal component analysis for sensor fault identification[J]. Computers chem. Eng, 1996, 20(7): 13-718.

DOI: 10.1016/0098-1354(96)00128-7

Google Scholar

[4] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems [M]. London: Springer-Verlag London Limited, (2001).

Google Scholar

[5] PÖLLÄNEN K, HÄKKINEN A, REINIKAINEN S P, RANTANENJ, MINKKINEN P. Dynamic PCA-based MSPC charts for nucleation prediction in batch cooling crystallization processes [J]. Chemometrics and Intelligent Laboratory Systems, 2006, 84(1/2): 126−133.

DOI: 10.1016/j.chemolab.2006.04.016

Google Scholar

[6] HE Qing-hua, HE Xiang-yu, ZHU Jian-xin. Fault detection of excavator's hydraulic system based on dynamic principal component analysis[J]. Journal of Central South University of Technology, 2008, 15: 700-705.

DOI: 10.1007/s11771-008-0130-8

Google Scholar

[7] SCHOLKOPF B, SMOLA A, Muller K R. Nonlinear component analysis as a kernel eigenvalue[ J ]. Neural Computation, 1998, 10 (5): 1299-1319.

DOI: 10.1162/089976698300017467

Google Scholar

[8] XU Y, ZHANG D, SONG F X, YANG J Y, JING Z, LI M. A method for speeding up feature extraction based on KPCA[J]. Neurocomputing, 2007, 70: 1056-1061.

DOI: 10.1016/j.neucom.2006.09.005

Google Scholar

[9] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(22): 2323-2326.

DOI: 10.1126/science.290.5500.2323

Google Scholar

[10] L'HEUREUXA P J, CARREAUA J, BENGIOA Y, DELALLEAUA O, YUEB S Y. Locally Linear Embedding for dimensionality reduction in QSAR[J]. Journal of Computer-Aided Molecular Design, 2004, 18: 475-482.

DOI: 10.1007/s10822-004-5319-9

Google Scholar

[11] ROWEIS S T, SAUL L K. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds[J]. Journal of Machine Learning Research, 2003, 4: 119-155.

Google Scholar

[12] MIN Wan-lin, LU Ke, He Xiao-fei. Locality pursuit embedding[J]. Pattern Recognition, 2004, 37(4): 781–788.

DOI: 10.1016/j.patcog.2003.09.005

Google Scholar