[1]
PEARSON K. On lines and planes of closest fit to systems of points in space[J]. Philos Mag, 1901, 6(2): 559 - 572.
Google Scholar
[2]
SAMUEL A L. Some studies in machine learning using the game of checkers[J]. IBM Journal Research and Development, 1967, 11(4 ): 601-617.
DOI: 10.1147/rd.116.0601
Google Scholar
[3]
DUNIA R, QIN S Joe, EDGAR T F, MCAVOY T J. Use of principal component analysis for sensor fault identification[J]. Computers chem. Eng, 1996, 20(7): 13-718.
DOI: 10.1016/0098-1354(96)00128-7
Google Scholar
[4]
CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems [M]. London: Springer-Verlag London Limited, (2001).
Google Scholar
[5]
PÖLLÄNEN K, HÄKKINEN A, REINIKAINEN S P, RANTANENJ, MINKKINEN P. Dynamic PCA-based MSPC charts for nucleation prediction in batch cooling crystallization processes [J]. Chemometrics and Intelligent Laboratory Systems, 2006, 84(1/2): 126−133.
DOI: 10.1016/j.chemolab.2006.04.016
Google Scholar
[6]
HE Qing-hua, HE Xiang-yu, ZHU Jian-xin. Fault detection of excavator's hydraulic system based on dynamic principal component analysis[J]. Journal of Central South University of Technology, 2008, 15: 700-705.
DOI: 10.1007/s11771-008-0130-8
Google Scholar
[7]
SCHOLKOPF B, SMOLA A, Muller K R. Nonlinear component analysis as a kernel eigenvalue[ J ]. Neural Computation, 1998, 10 (5): 1299-1319.
DOI: 10.1162/089976698300017467
Google Scholar
[8]
XU Y, ZHANG D, SONG F X, YANG J Y, JING Z, LI M. A method for speeding up feature extraction based on KPCA[J]. Neurocomputing, 2007, 70: 1056-1061.
DOI: 10.1016/j.neucom.2006.09.005
Google Scholar
[9]
ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(22): 2323-2326.
DOI: 10.1126/science.290.5500.2323
Google Scholar
[10]
L'HEUREUXA P J, CARREAUA J, BENGIOA Y, DELALLEAUA O, YUEB S Y. Locally Linear Embedding for dimensionality reduction in QSAR[J]. Journal of Computer-Aided Molecular Design, 2004, 18: 475-482.
DOI: 10.1007/s10822-004-5319-9
Google Scholar
[11]
ROWEIS S T, SAUL L K. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds[J]. Journal of Machine Learning Research, 2003, 4: 119-155.
Google Scholar
[12]
MIN Wan-lin, LU Ke, He Xiao-fei. Locality pursuit embedding[J]. Pattern Recognition, 2004, 37(4): 781–788.
DOI: 10.1016/j.patcog.2003.09.005
Google Scholar