[1]
Zhou B, Yoon SH, Leng JS. A three-dimensional constitutive model for shape memory alloy. Smart Mater. Struct. 18 (2009) 095016 (9pp).
DOI: 10.1088/0964-1726/18/9/095016
Google Scholar
[2]
Tanaka. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res. Mechanica, Vol. 18, No. 3(1986) p.251–263.
Google Scholar
[3]
Brinson LC. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material function and refined martensite internal variable. Journal of Intelligent Material Systems and Structures (1993).
DOI: 10.1177/1045389x9300400213
Google Scholar
[4]
Brinson LC, Panico M. Comments to the paper Differential and integrated form consistency in 1-D phenomenological models for shape memory alloy constitutive behavior, by V.R. Buravalla and A. Khandelwal [Int. J. Solids and Struct. 44 (2007).
DOI: 10.1016/j.ijsolstr.2008.08.007
Google Scholar
[5]
Liang C, Rogers CA. One-dimensional thermomechanical constitutive relations for shape memory material. Journal of Intelligent Material Systems and Structures (1990), Vol. 1, No. 2, p.207–234.
DOI: 10.1177/1045389x9000100205
Google Scholar
[6]
Zhou B, Liu YJ, Leng JS, Zou GP. A macro-mechanical constitutive model of shape memory alloys. Sci China Ser G-Phys Mech Astron (2009) 52 (9); 1382-1391.
DOI: 10.1007/s11433-009-0173-3
Google Scholar
[7]
Lin, Tobushi, Tanaka, Hattori, Ikai. Influence of strain rate on deformation properties of Ti-Ni shape memory alloy. JSME Int. J., A (1996). 39 (1)117-123.
DOI: 10.1299/jsmea1993.39.1_117
Google Scholar
[8]
Tobushi, Shimeno, Hachisuka, Tanaka. Influence of strain rate on super-elastic properties of Ti-Ni shape memory alloy. Mechanics of Materials 30 (1998) 141-150.
DOI: 10.1016/s0167-6636(98)00041-6
Google Scholar