Modeling of Stiffness Reduction of Vibration Conveyor Springs Subjected to Ultra High Cyclic Loading under High Humidity

Abstract:

Article Preview

Significant stiffness reduction of the plate spring due to delaminations around the interwoven cloths could be prevented by using CFRTP (carbon fiber cloth and Polyethylene Terephthalate (PET)) rather than that by using CFRP (carbon fiber cloth and epoxy), when ultra high cyclic loading was applied to the plate spring under high humidity condition. To explain the result, the prediction model of stiffness reduction was introduced considering time-dependent crack propagation accompanying with creep deformation around the crack tip. Stiffness reduction of CFRP under high humidity condition was not only determined by cyclic crack propagation but also by time-dependent crack propagation accompanying with creep deformation around the crack tip. It was found that CFRTP was effective material of the plate springs on vibration conveyer for the uses under high humidity condition to prevent significant stiffness reduction, where the crack propagation accompanying with creep deformation should be prevented around the crack tip.

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Edited by:

S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari

Pages:

975-980

DOI:

10.4028/www.scientific.net/KEM.471-472.975

Citation:

T. Yoshi et al., "Modeling of Stiffness Reduction of Vibration Conveyor Springs Subjected to Ultra High Cyclic Loading under High Humidity", Key Engineering Materials, Vols. 471-472, pp. 975-980, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.