An Effective Simulated Annealing-Based Mathematical Optimization Algorithm for Minimizing the Lennard-Jones Potential

Article Preview

Abstract:

The Lennard-Jones (LJ) Potential Energy Problem is to construct the most stable form of N atoms of a molecule with the minimal LJ potential energy. This problem has a simple mathematical form Minimize subject to Where ,is the coordinates ofatom. This paper is to minimize the L-J potential on ,where n = 3N. however it is a challenging and diffcult problem for many optimization methods when N is larger. This paper presents an effective mathematical optimization algorithm for minimizing the LJ Potential and a series of elegant optimal solutions of atoms up to 310 were got.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 474-476)

Pages:

2213-2216

Citation:

Online since:

April 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. M. Bagirov, Derivative-free methods for unconstrainted nonsmooth optimiza-tion and its numerical analysis, Investigacao Operacional 19 (1999) pp.75-93.

Google Scholar

[2] A. M. Bagirov, A method for minimization of quasidifferentiable functions, Optimization Methods and Software, 17(1), 2002, pp.31-60.

DOI: 10.1080/10556780290027837

Google Scholar

[3] A.M. Bagirov and A.M. Rubinov, Cutting angle method and a local search, to appear in Journal of Global Optimization.

Google Scholar

[4] A.M. Bagirov and J. Zhang, Comparative analysis of the cutting angle and simulated annealing methods in global optimization, to appear in Optimization, 52: 4 (2003), p.363 – 378.

DOI: 10.1080/02331930310001611565

Google Scholar

[5] D.G. Brooks and W.A. Verdini, Computational experience with generalized sim-ulated annealing over continuous variables, American Journal of Mathematical and Management Sciences 8 (1988) pp.425-449.

DOI: 10.1080/01966324.1988.10737248

Google Scholar

[6] V. Cerny, Thermodynamical approach to the travelling salesman problem: an effcient simulation algorithm, Journal of Optimization Theory and Applications45 (1985) pp.41-51.

Google Scholar

[7] A. Corana, M. Marchesi, C. Martini, and S. Ridella, Minimizing multimodal functions of continuous variables with the simulated annealing algorithm, ACM Transactions on Mathematical Software 13 (1987) pp.262-280.

DOI: 10.1145/29380.29864

Google Scholar

[8] A. -R. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method for nonlinear global optimization, Technical Report, Department of Ap-plied Mathematics and Physics, Kyoto University 2001-013 (December 2001).

Google Scholar

[9] A.E.W. Jones and G.W. Forbes, An adaptive simulated annealing algorithm for global optimization over continuous variables, Journal of Global Optimization 6 (1995) pp.1-37.

DOI: 10.1007/bf01106604

Google Scholar

[10] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated an-nealing, Science 220 (1983) pp.671-680.

DOI: 10.1126/science.220.4598.671

Google Scholar

[11] M. Locatelli, Simulated Annealing algorithms for continuous global optimiza-tion: convergence conditions, Journal of Optimization Theory and Applications 104(1) pp.121-133.

DOI: 10.1023/a:1004680806815

Google Scholar

[12] H.E. Romeijn and R.L. Smith, Simulated annealing for constrained global opti-mization, Journal of Global Optimization 5 (1994) pp.101-126.

DOI: 10.1007/bf01100688

Google Scholar

[13] K.F.C. Yiu, Y. Liu, and K.L. Teo, A hybrid descent method for global optimiza-tion, to appear in Journal of Global Optimization.

Google Scholar

[14] A. -R. Hedar and M. Fukushima, Simplex coding genetic algorithm for the global optimization of nonlinear functions, Technical Report, Department of Applied Mathematics and Physics, Kyoto University 2002-006 (March 2002).

Google Scholar

[15] P. M. Pardalos, D. Shalloway and G. L. Xue, Optimization methods for computing global minima of nonconvex potential energy functions, Journal of Global Optimization 4 (1994) pp.117-133.

DOI: 10.1007/bf01096719

Google Scholar

[16] D. J. Wales and J. P. K. Doye, Global optimization by Basin-Hopping and thelowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101 (1997) pp.5111-5116.

DOI: 10.1021/jp970984n

Google Scholar

[17] A. L. Mackay, A dense non-crystallographic packing of equal spheres, Acta Crystallographica 15 (1962) pp.916-918.

DOI: 10.1107/s0365110x6200239x

Google Scholar

[18] J. A. Northby, Structure and binding of the Lennard-Jones clusters: 13 _ N _147, J. Chem. Phys. 87 (10) (1987) pp.6166-6177.

DOI: 10.1063/1.453492

Google Scholar

[19] P. M. Pardalos, D. Shalloway and G. L. Xue, Optimization methods for computing global minima of nonconvex potential energy functions, Journal of Global Optimization 4 (1994) pp.117-133.

DOI: 10.1007/bf01096719

Google Scholar

[20] H.E. Romeijn and R.L. Smith, Simulated annealing for constrained global optimization, Journal of Global Optimization 5 (1994) pp.101-126.

DOI: 10.1007/bf01100688

Google Scholar

[21] D. Romero, C. Barron and S. Gomez, The optimal geometry of Lennard-Jones clusters: 148-309, Computer Physics Communications 123 (1-3) (1999)pp.87-96.

DOI: 10.1016/s0010-4655(99)00259-3

Google Scholar

[22] A.M. Rubinov, Abstract Convexity and Global Optimization (Kluwer Academic Publishers, Dordrecht, 2000).

Google Scholar