[1]
A. M. Bagirov, Derivative-free methods for unconstrainted nonsmooth optimiza-tion and its numerical analysis, Investigacao Operacional 19 (1999) pp.75-93.
Google Scholar
[2]
A. M. Bagirov, A method for minimization of quasidifferentiable functions, Optimization Methods and Software, 17(1), 2002, pp.31-60.
DOI: 10.1080/10556780290027837
Google Scholar
[3]
A.M. Bagirov and A.M. Rubinov, Cutting angle method and a local search, to appear in Journal of Global Optimization.
Google Scholar
[4]
A.M. Bagirov and J. Zhang, Comparative analysis of the cutting angle and simulated annealing methods in global optimization, to appear in Optimization, 52: 4 (2003), p.363 – 378.
DOI: 10.1080/02331930310001611565
Google Scholar
[5]
D.G. Brooks and W.A. Verdini, Computational experience with generalized sim-ulated annealing over continuous variables, American Journal of Mathematical and Management Sciences 8 (1988) pp.425-449.
DOI: 10.1080/01966324.1988.10737248
Google Scholar
[6]
V. Cerny, Thermodynamical approach to the travelling salesman problem: an effcient simulation algorithm, Journal of Optimization Theory and Applications45 (1985) pp.41-51.
Google Scholar
[7]
A. Corana, M. Marchesi, C. Martini, and S. Ridella, Minimizing multimodal functions of continuous variables with the simulated annealing algorithm, ACM Transactions on Mathematical Software 13 (1987) pp.262-280.
DOI: 10.1145/29380.29864
Google Scholar
[8]
A. -R. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method for nonlinear global optimization, Technical Report, Department of Ap-plied Mathematics and Physics, Kyoto University 2001-013 (December 2001).
Google Scholar
[9]
A.E.W. Jones and G.W. Forbes, An adaptive simulated annealing algorithm for global optimization over continuous variables, Journal of Global Optimization 6 (1995) pp.1-37.
DOI: 10.1007/bf01106604
Google Scholar
[10]
S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated an-nealing, Science 220 (1983) pp.671-680.
DOI: 10.1126/science.220.4598.671
Google Scholar
[11]
M. Locatelli, Simulated Annealing algorithms for continuous global optimiza-tion: convergence conditions, Journal of Optimization Theory and Applications 104(1) pp.121-133.
DOI: 10.1023/a:1004680806815
Google Scholar
[12]
H.E. Romeijn and R.L. Smith, Simulated annealing for constrained global opti-mization, Journal of Global Optimization 5 (1994) pp.101-126.
DOI: 10.1007/bf01100688
Google Scholar
[13]
K.F.C. Yiu, Y. Liu, and K.L. Teo, A hybrid descent method for global optimiza-tion, to appear in Journal of Global Optimization.
Google Scholar
[14]
A. -R. Hedar and M. Fukushima, Simplex coding genetic algorithm for the global optimization of nonlinear functions, Technical Report, Department of Applied Mathematics and Physics, Kyoto University 2002-006 (March 2002).
Google Scholar
[15]
P. M. Pardalos, D. Shalloway and G. L. Xue, Optimization methods for computing global minima of nonconvex potential energy functions, Journal of Global Optimization 4 (1994) pp.117-133.
DOI: 10.1007/bf01096719
Google Scholar
[16]
D. J. Wales and J. P. K. Doye, Global optimization by Basin-Hopping and thelowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101 (1997) pp.5111-5116.
DOI: 10.1021/jp970984n
Google Scholar
[17]
A. L. Mackay, A dense non-crystallographic packing of equal spheres, Acta Crystallographica 15 (1962) pp.916-918.
DOI: 10.1107/s0365110x6200239x
Google Scholar
[18]
J. A. Northby, Structure and binding of the Lennard-Jones clusters: 13 _ N _147, J. Chem. Phys. 87 (10) (1987) pp.6166-6177.
DOI: 10.1063/1.453492
Google Scholar
[19]
P. M. Pardalos, D. Shalloway and G. L. Xue, Optimization methods for computing global minima of nonconvex potential energy functions, Journal of Global Optimization 4 (1994) pp.117-133.
DOI: 10.1007/bf01096719
Google Scholar
[20]
H.E. Romeijn and R.L. Smith, Simulated annealing for constrained global optimization, Journal of Global Optimization 5 (1994) pp.101-126.
DOI: 10.1007/bf01100688
Google Scholar
[21]
D. Romero, C. Barron and S. Gomez, The optimal geometry of Lennard-Jones clusters: 148-309, Computer Physics Communications 123 (1-3) (1999)pp.87-96.
DOI: 10.1016/s0010-4655(99)00259-3
Google Scholar
[22]
A.M. Rubinov, Abstract Convexity and Global Optimization (Kluwer Academic Publishers, Dordrecht, 2000).
Google Scholar