Femur Design Parameters and Contact Stresses at UHMWPE Hip Joint Cup

Article Preview

Abstract:

The contact stress that occurs in the ultra-high molecular weight polyethylene (UHMWPE) hip joint cup has been shown to be correlated with the implant wear rate. The wear of the hip joint is considered as one of the main factors that affect the long term performance of the implant. The contact stress that occurs in the UHMWPE hip joint cup is affected by the implant dimensions and materials. In this study, four different femur materials and geometries were used to investigate the effects of femur design parameters on the resultant contact stress on the UHMWPE cup. The results of the finite element (FE) simulation show that the contact stresses at the UHMWPE cup decreases dramatically with increasing the femur diameter. Also the results indicated that the contact stresses on the UHMWPE cup decrease significantly when using functionally graded (FG) femur with low modulus of elasticity. The presence of metal backing results in a slight reduction in the UHMWPE cup contact stresses especially for small femurs. Finally, the presence of a gap between the UHMWPE cup and the femur results in a remarkable increase in the cup stress especially for a small femur. The hip joint femur dimensions and materials are thought to play an important role in the transition of load in the implant and should be taken into consideration during the design of the hip joint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-102

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.H. Teoh,W. H . Chan and R. Thampuran: Journal of Biomechanics Vol. 35 (2002), p.323.

Google Scholar

[2] S. Vesa and S. Ming: Wear Vol. 268 (2010), p.617.

Google Scholar

[3] A. Unsworth, S. C. Scholes, S.L. Smith A.P.D. Elfick and H.A. Ash : Tribology and Interface Engineering Series Vol. 38 (2000), p.195.

Google Scholar

[4] L.V. Wilches, J. A. Uribe and A. Toro: Wear Vol. 265 (2008), p.143.

Google Scholar

[5] T. Ilchmann, M. Reimold and W. Müller-Schauenburg: A simple access to geometrical concepts. Medical Engineering & Physics Vol. 30 (2008), p.373.

Google Scholar

[6] B. Lowry, D. David, R. Scott Corpe, N. Satya, C. Michael and T. Irina: The Journal of Arthroplasty Vol. 23 (2008), p.56.

Google Scholar

[7] S. Affatato , G. Bersaglia , M. Rocchi , P. Taddei , C. Fagnano and A. Toni: Biomaterials Vol. 26 (2005), p.3259.

DOI: 10.1016/j.biomaterials.2004.07.070

Google Scholar

[8] W. Qingliang, L. Jinlong and G. Shirong: Journal of Bionic Engineering Vol. 6 (2009), p.378.

Google Scholar

[9] F. Jevan, A. Martin, B. Sonny, A. Seth Greenwald, H. David, P. Brad, R. Michael and P. Lisa: Biomaterials Vol. 30 (2009), p.5572.

Google Scholar

[10] H. Fouad: Materials & Design Vol. 31 (2010), p.1117.

Google Scholar

[11] A-HI. Mourad, H. Fouad and E. Rabeh: Materials & Design Vol. 30 (2009), p.4112.

Google Scholar

[12] H. Fouad, A-HI. Mourad and D. C. Barton: Polymer Testing Vol. 24 (2005), p.549.

Google Scholar

[13] H. Fouad, A-HI. Mourad and D.C. Barton: Plast Rubber Compos Vol. 37 (2008), p.346.

Google Scholar

[14] S. Griza, A.N. Cê, E.P. Silva, F. Bertoni, A. Reguly and T.R. Strohaecker: Engineering Failure Analysis Vol. 16 (2009), p. (2036).

DOI: 10.1016/j.engfailanal.2009.01.004

Google Scholar

[15] C.W. Ray, J.J. Joshua, A. Barrington and E.R. Harry: The Journal of Arthroplasty Vol. 20 (2005), p.914.

Google Scholar

[16] S.C. Frank, E.D.C. Paul, A.K. Ashay, F.L. Jen, H.F. Victor, A.S. Steven and D.Z. Joseph: The Journal of Arthroplasty Vol. 13 (1998), p.867.

Google Scholar

[17] R.K. Korhonen, A. Koistinen , Y.T. Konttinen , S.S. Santavirta and R. Lappalainen: BioMedical Engineering Online Vol. 4 (2005), p.32.

Google Scholar

[18] E. Rixrath, S. Wendling-Mansuy, X. Flecher, P. Chabrand and N. Argenson: Journal of Biomechanics Vol. 41 (2008), p.1137.

DOI: 10.1016/j.jbiomech.2007.12.009

Google Scholar

[19] T. Bertram, H. Anton, K. Johan, K. Veronika, F. Gunnar, V. Nico and D. Ron: Journal of Biomechanics Vol. 41 (2008), p.100.

Google Scholar

[20] P.S.M. Barbour , D.C. Barton and J. Fisher: Wear Vol. 181-183 (1995), p.250.

Google Scholar

[21] J. Hai-bo: Journal of Bionic Engineering Vol. 4 (2007), p.123.

Google Scholar

[22] B. David and G. Tarun: Materials & Design Vol. 29 (2008), p.45.

Google Scholar

[23] S.D. Marianne, W. Luc, D. Siegfried and S. Kai-Uwe: Medical Engineering & Physics Vol. 30 (2008), p.1186.

Google Scholar

[24] L. Kang, A.L. Galvin, Z.M. Jin and J. Fisher: Proceedings of the Institution of Mechanical Engineers, Part H (Journal of Engineering in Medicine) Vol. 220- H1 (2006), p.33.

Google Scholar

[25] G.B. John, K.D. Thomas, A.W. Paul and C.C. Ian: The Journal of Arthroplasty Vol. 23 (2008), p.1090.

Google Scholar

[26] P.D.E. Alistair, M.H. Richard, M.P. Ian and U. Anthony: The Journal of Arthroplasty Vol. 13 (1998), p.291.

Google Scholar

[27] S.M. Darwish and A.M. Al-Samhan: J. of Materials Science and Engineering Technology Vol. 40 (2009), p.218.

Google Scholar

[28] K.M. Orhun, R.B. Charles, O'C. Daniel, S.P. Rebecca, M.E. Daniel, J. Murali and H.H. William: The Journal of Arthroplasty Vol. 16 (2001), p.24.

Google Scholar

[29] H. Fouad: Materials and Design Vol. 31 (2010), p.1117.

Google Scholar

[30] A. Wang, A. Essner and R. Klein: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Vol. 215(H2) (2001), p.133.

Google Scholar

[31] J.D. Currey: The Journal of Experimental Biology Vol. 202 (1999), p.2495.

Google Scholar