Biomechanical Characterization of a Cervical Corporectomy Using Porcine Specimens, Following an Experimental Approach

Article Preview

Abstract:

In this paper, the interaction among cervical vertebrae, a cervical plate and a bone graft implant, which is developed in a Corporectomy, is analyzed in an experimental form. In the case of specific damaged vertebra, its replacement is one of the alternative solutions. However, the displacement between the vertebral adjacent facets and the bone graft is a critical parameter which has to be evaluated in order to ensure the stability of the spine. Besides, it is advisable to make a precise evaluation of the structural integrity of the arrangement. For this study, porcine cervical vertebrae (C3-C5) were instrumented in order to replace a damaged C4 vertebra. This arrangement was tested under compression. The experimental observations were complemented with a numerical model. The displacements between the vertebral facets and the bone graft were measured. They are lower than 3 mm in order to develop stability in the spine. Besides, the proposed arrangement has structural integrity and the surgical procedure is simplified, as no wires are used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-111

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. T. Holly, D. F. Kelly, G. J. Counelis, T. Blinman, D. L. Mc Arthur and H. G. Cryer : Journal of Neurosurgery: Spine Vol. 96. No. 3 (2002), p.285.

Google Scholar

[2] J. Hakalo, C. Pezowicz, J. Wronski, R. Bedzinski and M. Kasprowicz: Journal of Orthopaedic Surgery. Vol. 16. No. 1 (2008), p.9.

Google Scholar

[3] J. A. Beltrán-Fernández, L. H. Hernández-Gómez, R. G. Rodríguez-Cañizo, G. Urriolagoitia-Calderón, G. Urriolagoitia-Sosa, A. González-Revatú and M. Dufoo-Olvera: Applied Mechanics and Materials Vols. 7-8, (2007), p.101.

DOI: 10.4028/www.scientific.net/amm.7-8.101

Google Scholar

[4] Müller, W.: Manual of internal fixation. 3rd ed, Científico-Médica (1992).

Google Scholar

[5] J.A. Beltrán-Fernández, L.H. Hernández-Gómez, R.G. Rodríguez-Cañizo, E.A. Merchán-Cruz, G. Urriolagoitia-Calderón, A. González-Rebatú, M. Dufoo-Olvera and G. Urriolagoitia-Sosa: Applied Mechanics and Materials Vols. 13-14 (2008), p.49.

DOI: 10.4028/www.scientific.net/amm.13-14.49

Google Scholar

[6] J. A. Beltrán Fernández. Ph. D. Thesis. SEPI-ESIME Zacatenco, México (2005).

Google Scholar

[7] C. M. T. Jeremy et, Si-Hoe Kuan Ming, E. L. K. Justin and H. T. Swee: Clinical Biomechanics Vol 21. No. 3 (2006), p.235.

Google Scholar

[8] Ortosintese. Catalog of products (2006) Brasil.

Google Scholar

[9] D. C. Moore, M. W. Chapman and D. Manske: J. Orthop. Res. Vol. 5 (1987), p.356.

Google Scholar

[10] V. R. Yingling, J. P. Callaghan, S. M. McGill: J. of Spinal Disorders & Techniques Vol. 12. No. 5 (1999), p.415.

Google Scholar

[11] J.A. Beltrán-Fernández, L.H. Hernández-Gómez, G. Urriolagoitia-Calderón, A. González-Rebatú and G. Urriolagoitia-Sosa: Applied Mechanics and Materials Vols. 24-25 (2010), p.287.

DOI: 10.4028/www.scientific.net/amm.24-25.287

Google Scholar

[12] T. Miura, M. M. Panjabi and P. A. Cripton: Spine Vol. 27. No. 1 (2002), p.43.

Google Scholar

[13] T. Miura, M. M Panjabi, P. A. Cripton, in: Proceedings of the 2001 Cervical Spine Research Society. Rosemont, IL: CSRS, p.55.

Google Scholar

[14] B. Allen Jr., R. L. Ferguson, T. R. Lehmann and R. P. O´Brien: Spines Vol. 7 (1982), p.1.

Google Scholar