Microstructure Evolution of a Fine Grain Al-50wt%Si Alloy Fabricated by High Energy Milling

Article Preview

Abstract:

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-61

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zhou, J. Duszczyk and B.M. Korevaar: J. Mater. Sci. Vol. 26 (1991), pp.3041-3050.

Google Scholar

[2] C. Zweben: J. Mater. Vol. 44 (1992), pp.15-23.

Google Scholar

[3] D.M. Jacobson and S.P.S. Sangha: IEEE T. Compon. Pack. Manuf. T. (A) Vol. 21 (1998), pp.515-520.

Google Scholar

[4] J.H. Shih, J.Y. Wu and E.J. Lavernia: Scripta Metallurgica et Materialia Vol. 29 (1993), pp.31-36.

DOI: 10.1016/0956-716x(93)90249-r

Google Scholar

[5] H.H. Zhang, D.L. Duan, G.J. Shao and L.P. Xu: Rare Metals Vol. 27 (2008), pp.59-63.

Google Scholar

[6] C.L. Xu, H.Y. Wang, Y.F. Yang and Q.C. Jiang: J. Alloy. Compd. Vol. 421 (2006) pp.128-132.

Google Scholar

[7] Y.Y. Chen and D.D.L. Chung: J. Mater. Sci. Vol. 29 (1994), pp.6069-6075.

Google Scholar

[8] C.W. Chien, S.L. Lee, J.C. Lin and M.T. Jahn: Mater. Lett. Vol. 52 ( 2002), pp.334-341.

Google Scholar

[9] D.M. Jacobson and A.J.W. Ogilvy: Material Wiss Werkst Vol. 34 (2003), pp.381-384.

Google Scholar

[10] F. Wang, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, H.W. Liu and Y.G. Wei: Mater. Charact. Vol. 59 (2008), pp.1455-1457.

Google Scholar

[11] Y.G. Wei, B.Q. Xiong, Y.A. Zhang, H.W. Liu and F. Wang: T. Nonferr. Metal. Soc. Vol. 17 (2007), pp.368-372.

Google Scholar

[12] C. -H. Chiang and C.Y.A. Tsao: Mater. Sci. Eng. A Vol. 395 (2005), pp.263-270.

Google Scholar

[13] C. Cui, A. Schulz, K. Schimanski and H. W. Zoch: J. Mater. Process. Tech. Vol. 209 (2009), pp.5220-5228.

Google Scholar

[14] C Suryanarayana: Prog. Mater. Sci. Vol. 46 (2001), pp.1-184.

Google Scholar

[15] J.I. Lee, T.W. Hong, I.H. Kim, S.C. Ur, Y.G. Lee and S.L. Ryu: Mater. Sci. Forum Vol. 449 (2004), pp.249-252.

Google Scholar

[16] K.D. Woo and D.L. Zhang: Curr. Appl. Phys. Vol. 4 (2004), pp.175-178.

Google Scholar

[17] H.E. Kissinger: Anal. Chem. Vol. 29(1957), pp.1702-1706.

Google Scholar

[18] M. Van Rooyen and E.J. Mitteneijer: Metall. Mater. Trans. A Vol. 20A (1989), pp.1207-1214.

Google Scholar

[19] B. Varga, E. Fazakas, H. Hargitai and L.K. Varga: J. Phys.: Conf. Ser. Vol. 144 (2009), 012105.

DOI: 10.1088/1742-6596/144/1/012105

Google Scholar

[20] S.C. Hogg, A. Lambourne, A. Ogilvy and P.S. Grant: Scripta Mater. Vol. 55 (2006), pp.111-114.

Google Scholar