Localized Corrosion of 304 Stainless Steel under a NaCl Droplet

Article Preview

Abstract:

The distributions of corrosion potential and galvanic current of 304 stainless steel under a NaCl droplet were studied by using the wire beam electrode (WBE). It was found that the distributions of the electrochemical parameters were heterogeneous with isolated anodic and cathodic zones appeared randomly. During the corrosion process, the polarity of some anodes changed with the evolution of time. The localized corrosion rate and heterogeneity increased firstly, and then decreased afterward with the increase of time, which can be attributed to the cooperative effects of the aggressive ions and the corrosion products.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 480-481)

Pages:

443-447

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Nishikata, Y. Ichihara, T. Tsuru, An application of electrochemical impedance spectroscopy to atmospheric corrosion study, Corros. Sci. 37 (1995): 897-911.

DOI: 10.1016/0010-938x(95)00002-2

Google Scholar

[2] A. Nishikata, Y. Ichihara, T. Tsuru, Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer, Electrochim. Acta, 41(1996): 1057-1062.

DOI: 10.1016/0013-4686(95)00438-6

Google Scholar

[3] G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin Probe,  Corros. Sci. 49(2007): 2021-(2036).

DOI: 10.1016/j.corsci.2006.10.017

Google Scholar

[4] Y. Tsutsumi, A. Nishikata, T. Tsuru, Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corros. Sci. 49 (2007) 1394-1407.

DOI: 10.1016/j.corsci.2006.08.016

Google Scholar

[5] S. Hastuty, A. Nishikata, T. Tsuru, Pitting corrosion of Type 430 stainless steel under chloride solution droplet, Corros. Sci. 52 (2010) 2035-(2043).

DOI: 10.1016/j.corsci.2010.02.031

Google Scholar

[6] Y.J. Tan, Wire beam electrode: a new tool for studying localised corrosion and other heterogeneous electrochemical processes, Corros. Sci. 41(1999)229-247.

DOI: 10.1016/s0010-938x(98)00120-6

Google Scholar

[7] Q. Zhong, Wire-beam electrode: a new tool for investigating electrochemical inhomogeneity of oil coatings, Prog. Org. Coat. 30(1997) 279-285.

DOI: 10.1016/s0300-9440(97)00004-0

Google Scholar

[8] Q. Zhong, Study of corrosion behaviour of mild steel and copper in thin film salt solution using the wire beam electrod, Corros. Sci. 44(2002) 909-916.

DOI: 10.1016/s0010-938x(01)00098-1

Google Scholar

[9] W. Wang, X. Zhang, J. Wang, The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: a study by the wire beam electrode method, Electrochim. Acta 54(2009) 5598-5604.

DOI: 10.1016/j.electacta.2009.04.064

Google Scholar

[10] X. Zhang, W. Wang, J. Wang, A novel device for the wire beam electrode method and its application in the ennoblement study, Corros. Sci. 51(2009) 1475-1479.

DOI: 10.1016/j.corsci.2009.03.002

Google Scholar

[11] T. Liu, Y.J. Tan, B.Z.M. Lin, N.N. Aung, Novel corrosion experiments using the wire beam electrode. (IV) Studying localised anodic dissolution of aluminium, Corros. Sci. 48 (2006) 67–78.

DOI: 10.1016/j.corsci.2004.11.022

Google Scholar