Computational and Experimental Study of Temperature Distribution and Residual Stress in Butt-Joint TIG Welds

Article Preview

Abstract:

This work conducted a non-linear finite element model associated with arc efficiency to simulate the temperature distribution and residual stress. A three-dimensional finite element analysis of temperature and stress in butt-joint TIG welds was performed using commercial software ANSYS. This model includes adjusting Gaussian distribution heat flux, alternating temperature dependent material properties, and managing thermal elasto-plastic material behavior. Computational results for both the temperature distribution and the residual stress are compared with available experimental data to confirm the accuracy of this technique. The simulated results of temperature distribution and residual stress are in good agreement with corresponding experimental data. The greatest value of this work does not lie in its ability to predict the magnitude and distribution of weld temperature and residual stress. Rather, this work proposed that prediction errors in a finite element model can be eliminated by modifying the arc power distribution function.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 480-481)

Pages:

459-465

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.C. Lin and P.Y. Chen: Mater. Sci. Eng. A Vol. 307 (2001), p.165.

Google Scholar

[2] K.H. Tseng and C.P. Chou: Sci. Technol. Weld. Join. Vol. 7 No. 1 (2002), p.57.

Google Scholar

[3] K.H. Tseng and C.P. Chou: J. Mater. Process. Technol. Vol. 123 (2002), p.346.

Google Scholar

[4] E. Armentani, R. Esposito and R. Sepe: J. Achieve. Mater. Manuf. Eng. Vol. 20 No. 1-2 (2007), p.319.

Google Scholar

[5] C.M. Cheng: J. Mater. Sci. Technol. Vol. 23 No. 2 (2007), p.217.

Google Scholar

[6] E. Macherauch: Exp. Mech. Vol. 6 No. 3 (1966), p.140.

Google Scholar

[7] V.I. Monin, T. Gurova, X. Castello and S.F. Estefen: Rev Adv Mater Sci. Vol. 19 (2009), p.172.

Google Scholar

[8] N.N. Hsu: Exp. Mech. Vol. 14 No. 5 (1974), p.169.

Google Scholar

[9] H. Qozam, S. Chaki, G. Bourse, C. Robin, H. Walaszek and P. Bouteille: Exp. Mech. Vol. 50 No. 2 (2009), p.179.

DOI: 10.1007/s11340-009-9283-0

Google Scholar

[10] N.J. Rendler and I. Vigness: Exp. Mech. Vol. 6 No. 12 (1966), p.577.

Google Scholar

[11] R. Paynter, A.H. Mahmoudi, M.J. Pavier, D.A. Hills, D. Nowell, C.E. Truman and D.J. Smith: J. Strain Anal. Eng. Des. Vol. 44 No. 1 (2009), p.45.

Google Scholar

[12] M. Adak and N.R. Mandal: Appl. Math. Model. Vol. 34 (2010), p.146.

Google Scholar

[13] T. Muraki, J.J. Bryan and K. Masubuchi: J. Eng. Mater. Technol. Vol. 97 (1975), p.81.

Google Scholar

[14] T. Muraki, J.J. Bryan and K. Masubuchi: J. Eng. Mater. Technol. Vol. 97 (1975), p.85.

Google Scholar

[15] Z.B. Kuang and S.N. Atluri: J. Appl. Mech. Vol. 52 (1985), p.274.

Google Scholar

[16] T.L. Teng and C.C. Lin: Int. J. Pres. Ves. Piping Vol. 75 (1998), p.857.

Google Scholar

[17] R.I. Karlsson and B.L. Josefson: J. Pres. Ves. Technol. Vol. 112 No. 1 (1990), p.76.

Google Scholar

[18] Y. Ueda, J. Wang, H. Murakawa and M.G. Yuan: Trans. JWRI Vol. 21 No. 2 (1992), p.111.

Google Scholar

[19] T.L. Teng and P.H. Chang: Int. J. Pres. Ves. Piping Vol. 75 (1998), p.237.

Google Scholar

[20] R.H. Yeh, S.P. Liaw and H.B. Yu: J. Mar. Sci. Technol. Vol. 11 No. 4 (2003), p.213.

Google Scholar

[21] N. Murugan and R. Narayanan: Mater. Des. Vol. 30 (2009), p. (2067).

Google Scholar

[22] P. Tekriwal and J. Mazumder: J. Eng. Mater. Technol. Vol. 113 (1991), p.336.

Google Scholar

[23] E.A. Bonifaz: Weld. J. Vol. 79 No. 5 (2000), p. 121s.

Google Scholar

[24] J.N. DuPont and A.R. Marder: Weld. J. Vol. 74, No. 12 (1995), pp. 406s.

Google Scholar

[25] V. Pavelic, O. Tanbakuchi, A. Uyehara and P.S. Myers: Weld. J. Vol. 48 No. 7 (1969), p. 295s.

Google Scholar