Theoretic Study of the Structures and Electric Properties of N-Doped InSb Nanoclusters

Article Preview

Abstract:

The first-principle quantum mechanical method was used to investigate the structures and electric properties of N-doped. Doping of N atom to clusters is found to be energetically quite favorable except for n=16. Different from bulk material, the LUMO-HOMO energy gaps of the InnSbn (n=6-12,14,16,24) clusters are enlarged by doping of N. The analysis of the electron density of the HOMO and LUMO states was performed to understand the behavior .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

574-578

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shan, W.; Walukiewicz, W.; Ager III,J. W.; et al. Band Anticrossing in GaInNAs Alloys. Phys. Rev. Lett. 1999, 82, 1221-1224.

DOI: 10.1103/physrevlett.82.1221

Google Scholar

[2] Tomić, S.; O'Reilly, E. P.; Klar, Peter J.; et al. Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaNxAs1−x/GaAs quantum wells. Phys. Rev. B 69, 2004, 245305.

Google Scholar

[3] Tomić, S. Electronic structure of InyGa1−yAs1−xNx/GaAs(N) quantum dots by ten-band k∙p theory. Phys. Rev. B 2006, 73, 125348.

Google Scholar

[4] Ashley,T.; Burke,T. M.; Pryce,G. J.; et al. InSb1−xNx growth and devices, Solid-State Electron. 2003, 47, 387-394.

DOI: 10.1016/s0038-1101(02)00377-5

Google Scholar

[5] Veal,T. D.; Mahboob,I.; and McConville,C. F. Negative Band Gaps in Dilute InNxSb1-x Alloys. Phys. Rev. Lett. 2004, 92, 136801.

Google Scholar

[6] Lindsay, A.; O'Reilly, E. P.; Andreev, A. D.; Ashley, T. Theory of conduction band structure of InNxSb1−x and GaNxSb1−x dilute nitride alloys. Phys. Rev. B 2008, 77, 165205.

Google Scholar

[7] Zaitsev-Zotov, S.V.; Kumzerov, Y.A.; Firsov Y.A.; Monceau, P. Luttinger-liquid-like transport in long InSb nanowires, J. Phys.: Condens. Matter 2000, 12, L303-L309.

DOI: 10.1088/0953-8984/12/20/101

Google Scholar

[8] Zhang,X. W.; Fan,W. J.; Li,S. S.; Xia, J. B. Influence of N doping on the Rashba coefficient, semiconductor-metal transition, and electron effective mass in InSb1−xNx nanowires: Ten-band k∙p model. Phys. Rev. B 200775, 205331.

Google Scholar

[9] Qiu,Y. M.; Uhl,D. Self-assembled InAsSb quantum dots on (001) InP substrates, Appl. Phys. Lett., 2004, 84, 1510.

DOI: 10.1063/1.1655690

Google Scholar

[10] Krok, F.; Kolodziej, J.J.; Such, B.; et al. Ion beam-induced nanostructuring of InSb (0 0 1) surfaces studied with atomic force microscopy. Nucl. Instr. Meth. Phys. Res. B 2003, 212, 264-269.

DOI: 10.1016/s0168-583x(03)01455-1

Google Scholar

[11] Ding,J. N.; Li,C. L.; Yuan,N. Y.; et al. The density functional calculations of InnSbn clusters (n≤ 16), Phys. Lett. A 2010, 374, 842-489.

Google Scholar

[12] Zhao M.W.; Xia Y.Y.; Tan Z.Y.; et al. Design and energetic characterization of ZnO clusters from first-principles calculations Phys. Lett. A 2007, 372, 39-43.

DOI: 10.1016/j.physleta.2007.06.070

Google Scholar