Adhesive Enhancement Improved Field Emission Characteristics of Carbon Nanotube Arrays on Energetic Ion Pre-Bombarded Si Substrates

Article Preview

Abstract:

Field emission (FE) characteristics of well-aligned multiwall carbon nanotube arrays (CNTAs) grown on originally polished and energetic iron ion bombarded Si substrates were investigated. It was found that the FE characteristics have been improved remarkably by the pretreatment of iron ion bombardment, an evident promotion of the highest emission current density from 4.05 mA/cm2 to 54.45 mA/cm2 was as an expression of this enhancement, this enhancement in characteristics is attributed to the improved adhesion between CNTs and Si substrate for the existence of iron buffer layer. The relationship between adhesive force and emission current density has been introduced, and the calculation reveals that the adhesion has been enhanced by 14.4 times due to the energetic ion pre-bombardment on Si substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

589-594

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] R.T. Zheng, G.A. Cheng, Y.B. Peng, Y. Zhao, H.P. Liu and C.L. Liang: Science in China Series E-Technological Sciences Vol. 47(5) (2004), p.616.

Google Scholar

[3] H.P. Liu, G.A. Cheng, R.T. Zheng, Y. Zhao and C.L. Liang: Journal of Molecular Catalysis A: Chemical Vol. 247 (2006), p.52.

Google Scholar

[4] H.P. Liu, G.A. Cheng, R.T. Zheng, Y. Zhao and C.L. Liang: Surface & Coatings Technology Vol. 202 (2008), p.3157.

Google Scholar

[5] H. Suga, H. Abe, M. Tanaka, T. Shimizu, T. Ohno, Y. Nishioka and H. Tokumoto: Surf. Interface Anal. Vol. 38 (2006), p.1763.

DOI: 10.1002/sia.2449

Google Scholar

[6] H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi and F. Okuyama: Appl. Phys. Lett. Vol. 78 (2001), p.2578.

DOI: 10.1063/1.1367278

Google Scholar

[7] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, D. Colbert and R.E. Smalley: Science Vol. 269 (1995), p.1550.

Google Scholar

[8] C. Yong, K. Kim, H. Sohn, Y. M. Cho and E.H. Yoo: Appl. Phys. Lett. Vol. 84(26) (2004), p.5350.

Google Scholar

[9] G.Y. Xiong, D.Z. Wang and Z.F. Ren: Carbon Vol. 44 (2006), p.969.

Google Scholar

[10] H. Liu, Y. Zhang, D. Arato, R.Y. Li, P. Mérel and X.L. Sun: Surface & Coatings Technology Vol. 202 (2008), p.4114.

Google Scholar

[11] B.Q. Zeng, G.Y. Xiong, S. Chen, W.Z. Wang, D.Z. Wang and Z.F. Ren: Appl. Phys. Lett. Vol. 89 (2006), pp.223119-1.

Google Scholar

[12] G. Zhang, W.H. Duan and B.L. Gu: Appl. Phys. Lett. Vol. 80(14) (2002), p.2589.

Google Scholar

[13] H.P. Liu, G.A. Cheng, C.L. Liang C L and R.T. Zheng: Nanotechnology Vol. 19 (2008), pp.245606-1.

Google Scholar

[14] J.S. Suh, K.S. Jeong and J.S. Lee: Appl. Phys. Lett. Vol. 80(13) (2002), p.2392.

Google Scholar

[15] W. Wei, K.L. Jiang, Y. Wei, M. Liu, H.T. Yang, L.N. Zhang, Q.Q. Li, L. Liu and S.S. Fan: nanotechnology Vol. 17 (2006), p. (1994).

Google Scholar