[1]
B. Suman, S. De. Transient Modeling of Micro Grooved Heat Pipe. International Journal of Heat and Mass Transfer. Vol. 48 (2005), p.1633.
DOI: 10.1016/j.ijheatmasstransfer.2004.11.004
Google Scholar
[2]
G. Pandraud, L. B. Martine. Influence of the Fluid on the Experimental Performances of Triangular Silicon Microheat Pipes. Journal of Electronic Packaging. Vol. 128 (2006), p.294.
DOI: 10.1115/1.2229233
Google Scholar
[3]
A. J. Jiao, H. B. Ma, J. K. Critser. Evaporation Heat Transfer Characteristics of a Grooved Heat Pipe with Micro-Trapezoidal Grooves. International Journal of Heat and Mass Transfer. Vol. 50 (2007), p.2905.
DOI: 10.1016/j.ijheatmasstransfer.2007.01.009
Google Scholar
[4]
B. Suman, N. Hoda. Effect of Variations in Thermophysical Properties and Design Parameters on the Performance of a V-shaped Micro Grooved Heat Pipe. Journal of Heat and Mass Transfer. Vol. 48 (2005), p. (2090).
DOI: 10.1016/j.ijheatmasstransfer.2005.01.007
Google Scholar
[5]
Liu Xiaowei, Xin Xin, Huo Mingxue, Xu Lei. Thermal analysis and maximum heat transport of a micro flat heat pipe with axial triangle grooves. Chinese Journal of Sensors and Actuators. Vol. 9 (2007), p.2103.
DOI: 10.1109/icsict.2008.4735055
Google Scholar
[6]
G. P. Peterson, H. B. Ma. Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipes. Journal of Heat Transfer. Vol. 118, (1996), p.731.
DOI: 10.1115/1.2822693
Google Scholar
[7]
Balram Suman, Prabhat Kumar. An analytical model for fluid flow and heat transfer in a micro-heat pipe of polygonal shape. International Journal of Heat and mass Transfer. Vol. 48 (2005), p.4498.
DOI: 10.1016/j.ijheatmasstransfer.2005.05.001
Google Scholar