Thermal Transport through Solid-Solid Interface with an Interlayer

Article Preview

Abstract:

Nonequilibrium molecular dynamics (NEMD) approach is developed to investigate the thermal transport across a solid-solid interface between two different materials with an interlayer around it. The effects of system size and the interlayer material’s properties on the interface thermal resistance are considered in our model. The NEMD simulations show that the addition of an interlayer between two highly dissimilar lattices depresses the interface thermal resistance effectively. Meanwhile, the effective thermal conductivity along the direction of heat flux is enhanced with the increasing system temperature. Moreover, the interface thermal resistance after including an interlayer does not depend strongly on the simulation system size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

750-754

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.L. Kapitza, Zh. Eksp. Teor. Fiz. 11, 1 {J. Phys. (USSR) 4 (1941) 181}.

Google Scholar

[2] Little, W.A., 1959, Can. J. Phys. 37, pp.334-349.

Google Scholar

[3] Swartz, E.T., and Pohl, R. O, Rev. Mod. Phys., 1989, 61, p.605–668.

Google Scholar

[4] Snyder, N.S., 1970, Cryogenics, 10, p.89–95.

Google Scholar

[5] Hopkins, P.E., and Norris, P.M., 2007, 11, p.247–257.

Google Scholar

[6] Hopkins, P.E., and Norris, P.M., 2009, ASME J. Heat Transfer, 131, p.022402.

Google Scholar

[7] Stoner, R.J., and Maris, H.J., 1993, Phys. Rev. B, 48, p.16373–16387.

Google Scholar

[8] Lyeo, H.K., and Cahill, D.G., 2006, Phys. Rev. B, 73, p.144301.

Google Scholar

[9] Inous R, Thanka h, nakanishi k., The Journal of Chemical Physics, 1996, 104: 9569-9577.

Google Scholar

[10] Maiti A, Mahan G D, Pantelides S T., Solid State Communications, 1997, 102(7): 517-521.

Google Scholar

[11] Lee, S.M., Matamis, G., Cahill, D. G, and Allen W.P., Microscale Thermophysical Engineering, 2-1(1998), 31-36.

Google Scholar

[12] Maruyama S, Kimura T., Thermal Science & Engineering, 1999, 7(1): 63-68.

Google Scholar

[13] Twu J, Ho J R., Physical Review B, 2003, 67(20): 205422(8).

Google Scholar

[14] S.H. Choi, The University of Tokyo, (2003).

Google Scholar

[15] S.H. Choi, S. Maruyama, in: Proc. of 40th Natinoal Heat Transfer Symp. of Japan. (2003).

Google Scholar

[16] S.H. Choi, S. Maruyama, International Journal of Thermal Science 44(2005)547-558.

Google Scholar

[17] P.E. Hopkins, P.M. Norris, and R. J. Stevens, J., Heat Transfer 130, 022401_2008.

Google Scholar

[18] P.J. Hegedis. A. R. Abramson, International Journal of Heat and Mass Transfer 49(2006) 4921-4931.

Google Scholar

[19] R.J. Stevens, Lenonid V. Zhigilei, Pamela M. Norris, International Journal of Heat and Mass Transfer 50(2007)3977-3989.

Google Scholar

[20] J W Lyver IV and E Blaisten-Barojas, J. Phys.: Condens. Matter 21 (2009) 345402 (8pp).

DOI: 10.1088/0953-8984/21/34/345402

Google Scholar

[21] Schelling P K, Phillpot S R., Journal of Applied Physics, 2003, 93(9): 5377-5387.

Google Scholar

[22] B. Hafskjold, S.K. Ratkje, J. Stat. Phys. 78 (1995)463.

Google Scholar

[23] H. Kaburaki, J. Li.S. Yip, Mater. Res. Soc. Symp. Proc. 538(1998) 503.

Google Scholar

[24] CHOISH, MARUYAMAS, KIMKK, et al., J Korean Phys Soc, 2003, 43: 747-753.

Google Scholar