Grain-Boundary Segregation and Phase-Separation Mechanism in Yttria-Stabilized Tetragonal Zirconia Polycrystal

Abstract:

Article Preview

Microstructure development during sintering in 3 mol% Y2O3-stabilized tetragonal ZrO2 polycrystal (Y-TZP) was systematically investigated in two sintering conditions: (a) 1100-1650°C for 2 h and (b) 1300°C for 0-50 h. In the sintering condition (a), the density and grain size in Y-TZP increased with the increasing sintering temperature. Scanning transmission electron microscopy (STEM) and nanoprobe X-ray energy dispersive spectroscopy (EDS) measurements revealed that the Y3+ ion distribution was nearly homogeneous up to 1300°C, i.e., most of grains were the tetragonal phase, but cubic-phase regions with high Y3+ ion concentration were clearly formed in grain interiors adjacent to the grain boundaries at 1500°C. High-resolution transmission electron microscopy (HRTEM) and nanoprobe EDS measurements revealed that no amorphous or second phase is present along the grain-boundary faces, and Y3+ ions segregated not only along the tetragonal-tetragonal phase boundaries but also along tetragonal-cubic phase boundaries over a width below about 10 nm, respectively. These results indicate that the cubic-phase regions are formed from the grain boundaries and/or the multiple junctions in which Y3+ ions segregated. We termed this process a “grain boundary segregation-induced phase transformation (GBSIPT)” mechanism. In the sintering condition (b), the density was low and the grain-growth rate was much slow. In the specimen sintered at 1300°C for 50 h, the cubic-phase regions were clearly formed in the grain interiors adjacent to the grain boundaries. This behavior shows that the cubic-phase regions were formed without grain growth, which can be explained by the GBSIPT model.

Info:

Periodical:

Edited by:

Takashi Goto, Yi-Bing Cheng and Takashi Akatsu

Pages:

82-88

DOI:

10.4028/www.scientific.net/KEM.484.82

Citation:

K. Matsui et al., "Grain-Boundary Segregation and Phase-Separation Mechanism in Yttria-Stabilized Tetragonal Zirconia Polycrystal", Key Engineering Materials, Vol. 484, pp. 82-88, 2011

Online since:

July 2011

Export:

Price:

$35.00

[1] F.F. Lange: J. Am. Ceram. Soc., Vol. 69 (1986), p.240.

[2] Y. Yoshizawa and T. Sakuma: ISIJ Int., Vol. 29 (1989), p.746.

[3] K. Matsui, H. Yoshida, and Y. Ikuhara: J. Am. Ceram. Soc., Vol. 86(2003), p.1401.

[4] K. Matsui, H. Yoshida, and Y. Ikuhara: J. Mater. Res., Vol. 21 (2006), p.2278.

[5] K. Matsui, H. Yoshida and Y. Ikuhara: J. Eur. Ceram. Soc., Vol. 30(2010), p.1679.

[6] N. Ohmichi, K. Kamioka, K. Ueda, K. Matsui and M. Ogai: J. Ceram. Soc. Jpn. Vol. 107(1999), p.28.

[7] Y. Ikuhara, P. Thavorniti and T. Sakuma: Acta Mater. Vol. 45 (1997), p.5275.

In order to see related information, you need to Login.