Notched Specimens Fracture Prediction with an Advanced GTN Model

Article Preview

Abstract:

This present contribution consists of implementing an advanced GTN damage model as a "User Material subroutine" in the Abaqus FE code. This damage model is based on specific nucleation and growth laws in order to predict the void coalescence properties of the material. When applied, this implementation predicts the damage evolution and the stress state of notched specimens made from dual phase steel. By comparing numerical predictions with experimental results, the numerical approach was improved and then validated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 488-489)

Pages:

77-80

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ben Bettaieb, X. Lemoine, O. Bouaziz, L. Duchêne, A-M. Habraken, Damage initiation and growth in DP steel sheets, Mechanics of Materials.

Google Scholar

[2] M. Ben Bettaieb, X. Lemoine, L. Duchêne, A-M. Habraken, On the numerical integration of an advanced Gurson model, International Journal for Numerical Methods in Engineering, DOI: 10. 1002/nme. 3010.

DOI: 10.1002/nme.3010

Google Scholar

[3] E. Maire, O. Bouaziz, M. Di Michiel, C. Verdu, Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography, Acta Materialia 56 (18), 2008, 4954-4964.

DOI: 10.1016/j.actamat.2008.06.015

Google Scholar

[4] C. Landron, O. Bouaziz, E. Maire, J. Adrien, Characterization and modeling of void nucleation by interface decohesion in dual phase steels, Scripta Materialia 63 (10), 2010, 973-976.

DOI: 10.1016/j.scriptamat.2010.07.021

Google Scholar

[5] Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2-15.

DOI: 10.2172/7351470

Google Scholar

[6] Tvergaard, V., Needleman, A., 1984. Analysis of the Cup-cone Fracture in a Round Tensile Bar. Acta Metall. 32, 157-169.

DOI: 10.1016/0001-6160(84)90213-x

Google Scholar

[7] Benzerga, A.A., Besson, J., 2001. Plastic potentials for anisotropic porous solids, Eur. J. Mech. A-Solids. 20, 397-434.

DOI: 10.1016/s0997-7538(01)01147-0

Google Scholar

[8] Pardoen, T., 2006. Numerical simulation of low stress triaxiality ductile fracture, Comput. Struct., 84, 1641-1650.

DOI: 10.1016/j.compstruc.2006.05.001

Google Scholar