Preparation and Characterization of Lead-Free Piezoelectric Ceramics

Article Preview

Abstract:

(K,Na)NbO3-based piezoelectric ceramics are promising candidates for practical applications of lead-free piezoelectric materials due to their excellent piezoelectric properties. In this paper, lead-free piezoelectric ceramics (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 (KNL-NTS) were successfully fabricated by traditional ceramics processing. The effects of sintering temperature on the structure, density and electrical properties of KNL-NTS ceramics were investigated. Crystal phases of both calcined powders and KNL-NTS ceramics have orthorhombic structure similar to that of KNbO3 ceramics. The piezoelectric coefficient first increases and then decreases with sintering temperature in the 1100-1180 °C range. KNL-NTS ceramics sintered at 1160 °C shows the maximum piezoelectric coefficient of about 199 pC·N-1 and the maximum remnant polarization of 18.75 μC·cm-2, with the corresponding 10.95 kV·cm-1 coercive field and 4.74 g/cm3 density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-193

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, W.R. Cook, H. Jaffe: Piezoelectric Ceramics. Academic Press, New York, USA, (1971).

Google Scholar

[2] J.F. Li, K. Wang, B. P. Zhang, et al.: J. Amer. Ceram. Soc. Vol. 89(2006), p.706.

Google Scholar

[3] D.M. Lin, K.W. Kwok and H.W.L. Chan: Appl. Phys. Lett. Vol. 91(2007), p.3513.

Google Scholar

[4] E. Hollensterin, M. Davis, D. Damjanovic, et al.: Appl. Phys. Lett. Vol. 87(2005), p.2905.

Google Scholar

[5] L. Egerton and D.M. Dillom: J. Amer. Ceram. Soc. Vol. 42(1959), p.438.

Google Scholar

[6] R.E. Jaeger and L. Egerton: J. Amer. Ceram. Soc. Vol. 45(1962), p.209.

Google Scholar

[7] P. Zhao, B. P. Zhang and J. F. Li: Appl. Phys. Lett. Vol. 90(2007), 2909.

Google Scholar

[8] F. Rubio-Marcos, P. Ochoa and J.F. Fernandex: J. Eur. Ceram. Soc. Vol. 27(2007), p.4125.

Google Scholar

[9] H.L. Du, F.S. Tang, D.J. Liu, et al.: Mater. Sci. Eng. B Vol. 136(2007), p.165.

Google Scholar

[10] Y. Guo, K. Kakimoto and H. Ohsato: Solid State Comm. Vol. 129(2004), p.279.

Google Scholar

[11] Z.P. Yang, Y.F. Chang, B. Liu, et al.: Mater. Sci. Eng. A Vol. 432(2006), p.292.

Google Scholar

[12] Y.T. Lu, X.M. Chen, D.Z. Jin, et al.: Mater. Res. Bull. Vol. 40(2005), p.1847.

Google Scholar

[13] Y. Guo, K. Kakimoto and H. Ohsato: J. Phys. Chem. Solids. Vol. 65 (2004), p.1831.

Google Scholar

[14] H. Birol, D. Damjanovic and N. Setter: J. Eur. Ceram. Soc. Vol. 26(2006), p.861.

Google Scholar

[15] W.F. Liang, D.Q. Xiao and W.J. Wu: Curr. Appl. Phys. Vol. 11(2011), p.1.

Google Scholar