[1]
L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81/7 (1998)1705.
Google Scholar
[2]
M. C. Rusu, D. L. Rusu, M. Rusu, Properties of acrylic bone cements formulated with PBMA, JOAM –Symposia 1/6 (2009)1020 – 1026.
Google Scholar
[3]
Y. He, J. P. Trotignon, B. Loty, A. Tcharkhtchi, J. Verdu, Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement, J Biomed Mater Res. 63 (2002) 800.
DOI: 10.1002/jbm.10405
Google Scholar
[4]
H. Van de Belt, D. Neut, W. Schenk, J. R. Van Horn, H.C. Van der Mei, H. J. Busscher, Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review, Acta Orthop Scand. 72, (2001) 557.
DOI: 10.1080/000164701317268978
Google Scholar
[5]
R. Kumar, H. Munstedt, Silver ion release from antimicrobial polyamide/silver composites, Biomaterials 26, 14 (2004) (2081).
DOI: 10.1016/j.biomaterials.2004.05.030
Google Scholar
[6]
M. Kawashita, S. Tsuneyama, F. Miyaji,T. Kokubo, K. Yamamoto, Antibacterial silver-containing silica glass prepared by sol-gel method, Biomaterials 21 (2000) 393-398.
DOI: 10.1016/s0142-9612(99)00201-x
Google Scholar
[7]
E. Vernè, S. Di Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Surface characterization of silver-doped bioactive glass, Biomaterials, 26 (2005) 5111-5119.
DOI: 10.1016/j.biomaterials.2005.01.038
Google Scholar
[8]
Y. Fan, K. Duan, R. Wang, A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization, Biomaterials 26, 14 ( 2005)1623-1632.
DOI: 10.1016/j.biomaterials.2004.06.019
Google Scholar
[9]
** American Society for Testing and Materials (ASTM), Standard F451-99a, 2000 Annual Book of ASTM Standard, Vol. 13. 01 (2000) 55.
Google Scholar
[10]
S. Cavalu, V. Simon, F. Banica, In vitro study of collagen coating by elecrodeposition on acrylic bone cement with antimicrobial potential, Digest J. Nanomaterials and Biostructures, 6, 1 (2011) 87-97.
Google Scholar
[11]
T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic, J Biomed Mater Res 24, (1990) 331-343.
DOI: 10.1002/jbm.820240607
Google Scholar
[12]
S. Cavalu, V. Simon, C. Albon, C. Hozan, Bioactivity evaluation of new silver doped bone cement for prosthetic surgery, JOAM 9, 3 (2007) 693-697.
Google Scholar
[13]
S. Kale, S. Biermann, C. Edwards, C. Tarnowski, M. Morris, M. W. Long, Three-dimensional cellular development is essential for ex vivo formation of human bone, Nature Biotech 18 (2000) 954.
DOI: 10.1038/79439
Google Scholar
[14]
A. Tinti, P. Tadei, R. Simoni, C. Fagnano, Applications of vibrational spectroscopy to biomaterials, Asian J. Physics 15, 2 (2006) 267-273.
Google Scholar
[15]
S. Cavalu, S. Cîntă Pînzaru, N. Peica, G. Damian, W. Kiefer, Adsorption behavior of hyaluronidase onto silver nanoparticles and PMMA bone substitute, JOAM. 9, 3 (2007) 689-693.
Google Scholar
[16]
P. Sutandar, D. J. Ahn, E. I. Franses, FTIR ATR Analysis for Microstructure and Water Uptake in Poly (methylmethacrylate) Spin Cast and Langmuir-Blodgett Thin Films, Macromolecules 27 (1994) 7316 -7328.
DOI: 10.1021/ma00103a013
Google Scholar
[17]
M. Bellantone, H. D. Williams, L.L. Hench, Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass , Antimicrobial Agents and Chemotherapy 46, 6 (2002)1940-(1945).
DOI: 10.1128/aac.46.6.1940-1945.2002
Google Scholar
[18]
S. Cavalu, V. Simon, G. Goller, I. Akin, Bioactivity and antimicrobial properties of PMMA/Ag2O acrylic bone cement collagen coated, Digest J. Nanomaterials and Biostructures, 6/2(2011) 87-97.
Google Scholar