Improving the Bioactivity and Biocompatibility of Acrylic Cements by Collagen Coating

Article Preview

Abstract:

Polymer-ceramic composites based on polymethyl methacrylate are widely used in orthopaedics as suture materials and fixation devices due to their biocompatibility and ability to support bony growth (osteoconductive) and also bone bioactive (to form a calcium phosphate layer on its surface). The aim of this study is to compare the microstructure, bioactivity and biocompatibility of new acrylic cement containing silver and collagen coated, with a comercial one, by in vitro study in simulated body fluid. In order to evaluate the properties of the surface layer, SEM microscopy and ATR-FTIR spectroscopy are used. The results indicates that both silver content and the presence of collagen layer favourise the mineralisation process at the surface.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

391-396

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81/7 (1998)1705.

Google Scholar

[2] M. C. Rusu, D. L. Rusu, M. Rusu, Properties of acrylic bone cements formulated with PBMA, JOAM –Symposia 1/6 (2009)1020 – 1026.

Google Scholar

[3] Y. He, J. P. Trotignon, B. Loty, A. Tcharkhtchi, J. Verdu, Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement, J Biomed Mater Res. 63 (2002) 800.

DOI: 10.1002/jbm.10405

Google Scholar

[4] H. Van de Belt, D. Neut, W. Schenk, J. R. Van Horn, H.C. Van der Mei, H. J. Busscher, Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review, Acta Orthop Scand. 72, (2001) 557.

DOI: 10.1080/000164701317268978

Google Scholar

[5] R. Kumar, H. Munstedt, Silver ion release from antimicrobial polyamide/silver composites, Biomaterials 26, 14 (2004) (2081).

DOI: 10.1016/j.biomaterials.2004.05.030

Google Scholar

[6] M. Kawashita, S. Tsuneyama, F. Miyaji,T. Kokubo, K. Yamamoto,  Antibacterial silver-containing silica glass prepared by sol-gel method, Biomaterials 21 (2000) 393-398.

DOI: 10.1016/s0142-9612(99)00201-x

Google Scholar

[7] E. Vernè, S. Di Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Surface characterization of silver-doped bioactive glass, Biomaterials, 26 (2005) 5111-5119.

DOI: 10.1016/j.biomaterials.2005.01.038

Google Scholar

[8] Y. Fan, K. Duan, R. Wang, A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization, Biomaterials 26, 14 ( 2005)1623-1632.

DOI: 10.1016/j.biomaterials.2004.06.019

Google Scholar

[9] ** American Society for Testing and Materials (ASTM), Standard F451-99a, 2000 Annual Book of ASTM Standard, Vol. 13. 01 (2000) 55.

Google Scholar

[10] S. Cavalu, V. Simon, F. Banica, In vitro study of collagen coating by elecrodeposition on acrylic bone cement with antimicrobial potential, Digest J. Nanomaterials and Biostructures, 6, 1 (2011) 87-97.

Google Scholar

[11] T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic, J Biomed Mater Res 24, (1990) 331-343.

DOI: 10.1002/jbm.820240607

Google Scholar

[12] S. Cavalu, V. Simon, C. Albon, C. Hozan, Bioactivity evaluation of new silver doped bone cement for prosthetic surgery, JOAM 9, 3 (2007) 693-697.

Google Scholar

[13] S. Kale, S. Biermann, C. Edwards, C. Tarnowski, M. Morris, M. W. Long, Three-dimensional cellular development is essential for ex vivo formation of human bone, Nature Biotech 18 (2000) 954.

DOI: 10.1038/79439

Google Scholar

[14] A. Tinti, P. Tadei, R. Simoni, C. Fagnano, Applications of vibrational spectroscopy to biomaterials, Asian J. Physics 15, 2 (2006) 267-273.

Google Scholar

[15] S. Cavalu, S. Cîntă Pînzaru, N. Peica, G. Damian, W. Kiefer, Adsorption behavior of hyaluronidase onto silver nanoparticles and PMMA bone substitute, JOAM. 9, 3 (2007) 689-693.

Google Scholar

[16] P. Sutandar, D. J. Ahn, E. I. Franses, FTIR ATR Analysis for Microstructure and Water Uptake in Poly (methylmethacrylate) Spin Cast and Langmuir-Blodgett Thin Films, Macromolecules 27 (1994) 7316 -7328.

DOI: 10.1021/ma00103a013

Google Scholar

[17] M. Bellantone, H. D. Williams, L.L. Hench, Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass , Antimicrobial Agents and Chemotherapy 46, 6 (2002)1940-(1945).

DOI: 10.1128/aac.46.6.1940-1945.2002

Google Scholar

[18] S. Cavalu, V. Simon, G. Goller, I. Akin, Bioactivity and antimicrobial properties of PMMA/Ag2O acrylic bone cement collagen coated, Digest J. Nanomaterials and Biostructures, 6/2(2011) 87-97.

Google Scholar