[1]
A.J. Ambard, L. Mueninghoff, Calcium Phosphate Cement: Review of Mechanical and Biological Properties, J. Prosthodont. 15 (2006) 321-328.
DOI: 10.1111/j.1532-849x.2006.00129.x
Google Scholar
[2]
W.E. Brown, L.C. Chow, A new calcium phosphate setting cement, J. Dental. Res. 62 (1983) 672-679.
Google Scholar
[3]
M. Bohner, U. Gbureck, J.E. Barralet, Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment, Biomaterials 26 (2005) 6423-6429.
DOI: 10.1016/j.biomaterials.2005.03.049
Google Scholar
[4]
M. Bohner, Reactivity of calcium phosphate cements, J. Mater. Chem. 17 (2007) 3980-3986.
Google Scholar
[5]
K.S. TenHuisen, P.W. Brown, Formation of calcium-deficient hydroxyapatite from alpha-tricalcium phosphate, Biomaterials 19 (1998) 2209-2217.
DOI: 10.1016/s0142-9612(98)00131-8
Google Scholar
[6]
O. Gauthier, J.M. Bouler, E. Aguado, P. Pilet, G. Daculsi, Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth, Biomaterials 19 (1998) 133-139.
DOI: 10.1016/s0142-9612(97)00180-4
Google Scholar
[7]
K.A. Hing, S.M. Best, W. Bonfield, Characterization of porous hydroxyapatite, J. Mater. Sci. -Mater. Med. 10 (1999) 135-145.
Google Scholar
[8]
J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J. Wagoner Johnson, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials 28 (2007).
DOI: 10.1016/j.biomaterials.2006.08.021
Google Scholar
[9]
J.T. Zhang, F. Tancret, J.M. Bouler, Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution, Mater. Sci. Eng. C-Mater. Biol. Appl. 31 (2011) 740-747.
DOI: 10.1016/j.msec.2010.10.014
Google Scholar
[10]
E. Charriere et al, Mechanical characterization of brushite and hydroxyapatite cements, Biomaterials 22 (2001) 2937-2945.
DOI: 10.1016/s0142-9612(01)00041-2
Google Scholar
[11]
H. Xu, E.F. Burguera, L.E. Carey, Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures, Biomaterials 28 (2007) 3786-3796.
DOI: 10.1016/j.biomaterials.2007.05.015
Google Scholar
[12]
A.J. Wagoner Johnson, B.A. Herschler, A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair, Acta Biomater. 7 (2011) 16-30.
DOI: 10.1016/j.actbio.2010.07.012
Google Scholar
[13]
I. Dlouhy, M. Holzmann, J. Man, L. Valka, The use of chevron notched specimen for fracture toughness determination, Metal. Mater 32 (1994) 3-13.
Google Scholar
[14]
W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech 18 (1951) 293-305.
Google Scholar
[15]
H. Monma, S. Ueno, T. Kanazawa, Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate, J. Chem. Technol. Biotechnol. 31 (1981) 15-24.
DOI: 10.1002/jctb.280310105
Google Scholar
[16]
K.J. Koester, J.W. Ager, R.O. Ritchie, The true toughness of human cortical bone measured with realistically short cracks, Nat. Mater. 7 (2008) 672-677.
DOI: 10.1038/nmat2221
Google Scholar
[17]
F. Pecqueux, F. Tancret, N. Payraudeau, J.M. Bouleret, Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment, J. Eur. Ceram. Soc. 30 (2010) 819-829.
DOI: 10.1016/j.jeurceramsoc.2009.09.017
Google Scholar