[1]
M. Bohner, Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury. 31 (2000) D34-D47.
DOI: 10.1016/s0020-1383(00)80022-4
Google Scholar
[2]
A.J. Ambard, L. Mueninghoff, Calcium phosphate cement: review of mechanical and biological properties, J. Prosth. 15 (2006) 321-328.
DOI: 10.1111/j.1532-849x.2006.00129.x
Google Scholar
[3]
M. Motisuke, R.G. Carrodeguas, C.A.C. Zavaglia, Mg-free precursors for the synthesis of pure phase Si-doped [alfa]-Ca3(PO4)2, Key Eng. Mat. 361-363 (2008) 199-202.
DOI: 10.4028/www.scientific.net/kem.361-363.199
Google Scholar
[4]
R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, P. Greil, Influence of magnesium doping on the phase transformation temperature of [beta]-TCP ceramics examined by Rietveld Refinement, Biomaterials. 26 (2005) 428-432.
DOI: 10.1016/j.biomaterials.2004.09.017
Google Scholar
[5]
R.G. Carrodeguas, A.H. De Aza, X. Turrillas, P. Pena, S. De Aza, New approach to the b-a polymorphic transformation in Magnesium-substituted tricalcium phosphate and its practical implications, J. Am. Ceram. Soc. 91 (2008) 1281-1286.
DOI: 10.1111/j.1551-2916.2008.02294.x
Google Scholar
[6]
S. Panzavolta, P. Torricelli, B. Bracci, M. Fini, A. Bigi, Alendronate and Pamidronate calcium phosphate bone cements: Setting properties and in vitro response of osteoblast and osteoclast cells, J. Inorg. Bioch. 103 (2009) 101-106.
DOI: 10.1016/j.jinorgbio.2008.09.012
Google Scholar
[7]
L.A. dos Santos, R.G. Carrodeguas, A.O. Boschi, A.C. de Arruda, Dual-setting calcium phosphate cement modified with ammonium polyacrylate, Art. Organs. 27 (2003) 412-418.
DOI: 10.1046/j.1525-1594.2003.07248.x
Google Scholar
[8]
M.P. Ginebra, E. Fernández, F.C.M. Driessens, J.A. Planell, The effect of Na2HPO4 addition on the setting reaction kinetics of an α-TCP cement, Bioc. 11 (1998) 243-246.
Google Scholar
[9]
M. Komath, H.K. Varma, R. Sivakumar, On the development of an apatitic calcium phosphate bone cement, Bull. Mat. Sci. 23 (2000) 135-140.
DOI: 10.1007/bf02706555
Google Scholar
[10]
S. Sarda, E. Fernandez, M. Nilsson, N.M. Balcells, J.A. Planell, Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent, J. Biom. Res, 61 (2002) 653-659.
DOI: 10.1002/jbm.10264
Google Scholar
[11]
M. Yoshikawa, Y. Terada, T. Toda, Setting time and sealing ability of [alpha]-tricalcium phosphate cement containing titanic oxide, J. Osaka Dent. Un. 32 (1998) 67-70.
Google Scholar
[12]
M. Yoshikawa, T. Toda, Reconstruction of alveolar bone defect by calcium phosphate compounds, J. Biom. Mat. Res. 53 (2000) 430-437.
DOI: 10.1002/1097-4636(2000)53:4<430::aid-jbm18>3.0.co;2-e
Google Scholar
[13]
L.M. Groover, J.C. Knowles, G.J.P. Fleming, J.E. Barralet, In vitro ageing of brushite calcium phosphate cement, Biomaterials. 24 (2003) 4133-4141.
DOI: 10.1016/s0142-9612(03)00293-x
Google Scholar
[14]
H. Hao, N. Amizuka, K. Oda, N. Fujii, H. Ohnishi, A. Okada, S. Nomura, T. Maeda, A histological evaluation on self-setting alpha-tricalcium phosphate applied in the rat bone cavity, Biomaterials. 25 (2004) 431-442.
DOI: 10.1016/s0142-9612(03)00550-7
Google Scholar
[15]
F. Theiss, D. Apelt, B. Brand, A. Kutter, K. Zlinszky, M. Bohner, S. Matter, C. Frei, J.A. Auer, B. von Rechenberg, Biocompatibility and resorption of a brushite calcium phosphate cement, Biomaterials. 26 (2005) 4383-4394.
DOI: 10.1016/j.biomaterials.2004.11.056
Google Scholar
[16]
A.C.D. Rodas, M.J.S. Maizato, A.A. Leiner, R.N.M. Pitombo, B. Polakiewicz, M.M. Beppu, O.Z. Higa, Cytotoxicity and genotoxicity of bovine pericardium preserved in glycerol, Atificial Organs 32 (2008) 272-276.
DOI: 10.1111/j.1525-1594.2008.00542.x
Google Scholar