FTIR Analysis and Cytotoxicity Test of Titanium Dioxide Nanoparticles

Article Preview

Abstract:

Titanium dioxide is a material widely used in electronics industry and little explored in the biomedical area, which is the objective of this work. Nowadays one can find surgical instruments coated with thin films that have bactericidal properties when they are activated in the presence of ultraviolet light. For crystalline phase control TiO2 was calcinated at 500°C. The crystallite mean size for sample calcinated at 500°C was 27nm. With the results of cytotoxicity it is possible to say that biomedical applications are possible. Electron microscopy images showed nanoparticles obtained by sol-gel process and the compounds were identified by FTIR analysis. Raman spectroscopy confirmed the existence of anatase titania phase and X-ray diffraction showed this material to be composed of a crystalline phase. X-ray fluorescence identified chemical contaminants.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

768-774

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Pavlova, J. Barloti, V. Teters, J. Locs, L. Berzina-Cimdina, Processing and Application of Ceramics. 2009; 3, 4: 187–190.

DOI: 10.2298/pac0904187p

Google Scholar

[2] A. Naldoni, A. Minguzzi, A. Vertova, V. Dal Santo, L. Borgesec, C.L. Bianchi, J. Mater. Chem. 2010; 21: 400-407.

Google Scholar

[3] Y. Li, Y. Jiang, F. Liu, F. Ren, G. Zhao, X. Leng, Food Hydrocolloids. 2011; 25, 5: 1098-1104.

Google Scholar

[4] B.B. Topuz, G. Gündüz, B. Mavis, U. Çolak, Dyes and Pigments. 2011; 90, 2: 123-128.

Google Scholar

[5] N. Nag, D. Guin, P. Basak, SV. Manorama, Materials Research Bulletin. 2008; 43, 12: 3270-3285.

DOI: 10.1016/j.materresbull.2008.02.021

Google Scholar

[6] W. Yu, J. Qiu, F. Zhang, Colloids and Surfaces B: Biointerfaces. 2011; 84, 2: 400-405.

Google Scholar

[7] J. Wang, S. Li, W. Yan, S.D. Tse, Q. Yao, Proceeding of the Combustion Institute. 2011; 33, 2: 1925-(1932).

Google Scholar

[8] P.X. Ma, Advanced Drug Delivery Reviews. 2008; 60: 184-198.

Google Scholar

[9] X. Liu, L.A. Smith, J. Hu, P.X. Ma, Biomaterials. 2009; 30: 2252-2258.

Google Scholar

[10] D. Qui, L. Yang, Y. Yin, A. Wang, Surface and Coatings Technology. 2011; 205, 10: 3280-3284.

Google Scholar

[11] R. Amin, S. Hwang, S.H. Park, NANO: Brief Reports and Reviews. 2011; 6, 2: 101-111.

Google Scholar

[12] A.E. Allounia, M.R. Cimpan, P.J. Hol, T. Skodvind, N.R. Gjerdet, Colloids and Surfaces B: Biointerfaces. 2009; 68: 83-87.

Google Scholar

[13] K.K. Akurati, Synthesis of TiO2 based nanoparticles for photocatalytic applications. 1st edition. Cuvillier Verlag Göttingen, (2008).

Google Scholar

[14] M. Nag, D. Guin, S.V. Manorama, Materials Research Bulletin. 2007; 9: 1691-1704.

Google Scholar

[15] L.S. Birks, H, Friedman, Journal of Applied Physics. 1946; 17: 687-692.

Google Scholar

[16] A.C.D. Rodas, M.J.S. Maizato, A.A. Leiner, R.N.M. Pitombo, B. Polakiewicz, M.M. Beppu, O.Z. Higa, Artificial Organs. 2008; 32, 4: 272-276.

DOI: 10.1111/j.1525-1594.2008.00542.x

Google Scholar

[17] J.Y. Zhang, I.W. Boyd, B.J. O'sullivan, P.K. Hurley, P.V. Kelly, J.P. Sénateur, Journal of Non-Crystalline Solids. 2002; 303: 134-138.

DOI: 10.1016/s0022-3093(02)00973-0

Google Scholar

[18] N. Arconada, A. Durán, S. Suárez, R. Portela, J.M. Coronado, B. Sánchez, Y. Castro, Applied Catalysis B: Environmental. 2009; 86, 1-2: 1-7.

DOI: 10.1016/j.apcatb.2008.07.021

Google Scholar

[19] J. Wang, R.H. Li, Z.H. Zhang, W. Sun, X.F. Wang, Z.Q. Xing, R. Xu, X.D. Zhang, Inorganic Materials. 2008; 44, 6: 608-614.

Google Scholar

[20] A. Orendorz, A. Brodyanski, J. Lösch, L.H. Bai, Z.H. Chen, Y.K. Le, C. Ziegler, H. Gnaser, Surface Science. 2007; 601: 4390-4394.

DOI: 10.1016/j.susc.2007.04.127

Google Scholar