Study of the early Stage of Deposition Process for Electrodeposited Ni100-XFeX Thin Films

Article Preview

Abstract:

The aim of this work is to understand the early stages in the growth mechanism of invar (Fe64Ni34) alloys and also to study the influence of potential on the evolution of their crystalline structures. Fe64Ni34 layers were deposited onto copper substrates under optimal conditions using the electrochemical method of cyclic voltammetry (CV) and chronoamperometry (CA). The influence of the potential is examined and the nucleation kinetics is discussed. In this purpose, the obtained experimental data was interpreted by applying useful theoretical methods developed by Scharifker and Hills. X-ray diffraction experiments were performed on all samples in order to follow the structural evolution of Fe64Ni34 layers as a function of the potential.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-4

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. D. Leith, W. Wang, D. T. Schwartz, J. Electrochem. Soc. 145 (1999) 2827 - 2833.

Google Scholar

[2] Thomas Fearn, British Patent 2266 (1871).

Google Scholar

[3] K. -M. Yin, B. -T. Lin, Surface and Coatings Technology 78 (1996) 205-210.

Google Scholar

[4] Xiaochun Li, Zhixei Li, Proceedings of IMECE'03, 2003 ASME International Mechanical Engineering Congress, Washigton, D. C., November 15-21, (2003).

Google Scholar

[5] Giouroudi, A. Ktena and E. Hristoforou, J. Opt. Adv. Mat., 6, (2004) 45.

Google Scholar

[6] A. Brenner, « Electrodeposition of alloys », vol. 1, Academic Press, New York, (1963), 77.

Google Scholar

[7] H. Chiriac, M. Pletea and E. Hristoforou, Sensors and Actuators A, 68, (1998) 414.

Google Scholar

[8] E. Hristoforou, J. Opt. Adv. Mat., 4, (2002) 245.

Google Scholar

[9] A. Milchev, Electrocristallisation. Fundamentals of nucleation and growth, kluwer Academic Publishers, Boston/ Dordrecht/London, (2002).

Google Scholar

[10] B. Scharifker, G. Hills, Electrochem. Ata 28 (1983) 879.

Google Scholar

[11] S. N. Srimathi, S. M. Mayanna, Met. Finish, 83, N°3, (1985), 45.

Google Scholar

[12] H. Medouer, M. Daamouche, A. Guittoum, S. Messaadi, S. H. Karagianni, J. Opt. Adv. Mat., (will be submitted).

Google Scholar

[13] Staikov, Electrocistallization in nanotechnology, WILEY-VCH Verlag Gmbh&Co. KGaA (2007).

DOI: 10.1002/9783527628155

Google Scholar

[14] A. Afshar, A G Dolati, M. Ghorbani, Mat. Chem. Phys. 77 (2002) 352.

Google Scholar

[15] Fabio R. Bento, Lucia H. Mascaro, Surf. Coat. Technol. 201 (2006) 1752.

Google Scholar

[16] A. Azizi, A. Sahari, G. Schmerber and A. Dimia, International J. of Nanoscience, 7 (2008) 345.

Google Scholar

[17] Ibro tabakovic, Venkateswara inturi, Jeremy Thurn, Mark Kief, Electrochem. Ata 55 (2010) 6749.

Google Scholar

[18] Chang-wei Su, Feng-jiao He, Hui Ju, Yu-bin Zhang, Er-Li Wang, Electrochimica Acta 54 (2009) 6257.

Google Scholar