Silver-Rutile UV Sensor Fabricated on Thermally Oxidized Titanium Foil

Article Preview

Abstract:

A UV-sensitive Schottky diode of Ag-rutile-Ti structure is fabricated on a thermally oxidized titanium chip. The junction is formed by the thermal evaporation of silver in vacuum and a subsequent controlled annealing process. Applying a biasing voltage of-300 mV, the reverse current of the fabricated silver-rutile-titanium structure increases five orders of magnitude under 50 µW/mm2 UV illumination ( λ=355 nm). The device is visible-blind and its operation is described based on the photoelectric mechanism in the carrier-depleted oxide layer. The dominance of the photoelectric, rather than photoconductive, mechanism along with the dense rutile layer are responsible for the fast transient times observed. The response and recovery times of the device are 800 µs and 7 ms, respectively.The device is stable and extremely cost effective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-22

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.W. Liu, J.G. Ma, J.Y. Zhang, Y.M. Lu, D.Y. Jiang, B.H. Li, D.X. Zhao, Z.Z. Zhang, B. Yao, D.Z. Shen: Solid-State Electron. Vol. 51 (2007), p.757.

Google Scholar

[2] S.J. Young, L.W. Ji, S.J. Chang, S.H. Liang, K.T. Lam, T.H. Fang, K.J. Chen, X.L. Du, Q.K. Xue: Sens. Actuator A-Phys. Vol. 141 (2008), p.225.

Google Scholar

[3] Y.A. Goldberg: Semicond. Sci. Technol. Vol. 14 (1999), p.41.

Google Scholar

[4] E. Monroy, F. Omnes and F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p.33.

Google Scholar

[5] M. Mazzillo, G. Condorelli, M.E. Castagna, G. Catania, A. Sciuto, F. Roccaforte and V. Raineri: IEEE Photonics Technol. Lett. Vol. 21 (2009), p.1782.

DOI: 10.1109/lpt.2009.2033713

Google Scholar

[6] F. Moscatelli: Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. Vol. 583 (2007), p.157.

Google Scholar

[7] M.L. Lee, J.K. Sheu, W.C. Lai, Y.K. Su, S.J. Chang, C.J. Kao, C.J. Tun, M.G. Chen, W.H. Chang, G.C. Chi and J.M. Tsai: J. Appl. Phys. Vol. 94 (2003), p.1753.

Google Scholar

[8] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee: Mater. Sci. Eng. R-Rep. Vol. 30 (2000), p.55.

Google Scholar

[9] S. Banerjee, J. Gopal, P. Muraleedharan, A.K. Tyagi and B. Raj: Curr. Sci. Vol. 90 (2006), p.1378.

Google Scholar

[10] F. Hossein-Babaei, M. Keshmiri, M. Kakavand and T. Troczynski, Vol. 110 (2005), p.28.

Google Scholar

[11] H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou and W. Chen: Appl. Phys. Lett. Vol. 90 (2007), p.201118.

Google Scholar

[12] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei and S. Ruan: Appl. Phys. Lett. Vol. 94 (2009), p.123502.

DOI: 10.1063/1.3103288

Google Scholar

[13] J. Zou, Q. Zhang, K. Huang and N. Marzari: J. Phys. Chem. C Vol. 114 (2010), p.10725.

Google Scholar

[14] F. Hossein-Babaei, S. Rahbarpour: Solid-State Electron. Vol. 56 (2011), p.185.

Google Scholar

[15] F. Hossein-Babaei: Electron. Lett. Vol. 44 (2008), p.161.

Google Scholar

[16] F. Hossein-Babaei, S. Abbaszadeh and M.S. Esfahani: IEEE Sens. J. Vol. 9 (2009), p.237.

Google Scholar

[17] F. Yan, X. Xin, S. Aslam, Y. Zhao, D. Franz, J.H. Zhao and M. Weiner: IEEE J. Quantum Electron. Vol. 40 (2004), p.1315.

Google Scholar