Finite Element Data Reduction Based Energy Release Rate for Delamination Tests

Article Preview

Abstract:

This paper deals with the advantages of the finite element modeling and design, especially, of delamination test coupons involved in fracture analysis of laminated composite plates. This is shown through two relevant aspects in delamination toughness measuring, say: data reduction and Iso-G delamination front design. Many experimental data reductions are based on beam theories and thus assumes straight delamination front during propagation, which is not true when investigating laminates with general anisotropy. Another aspect is also emphasized, and concern test procedure simplification to avoid displacement measurements. This is done through a direct energy release rate calculations via the crack closure integral method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-78

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. F Rybicki , M. F Kanninen, : A finite element calculation of stress intensity factors by modified crack closure integral. Engineering Fracture Mechanics 9, (1977), pp.931-938.

DOI: 10.1016/0013-7944(77)90013-3

Google Scholar

[2] Whitney, J.M. Experimental characterization of delamination fracture. In Interlaminar Response of Composite Materials, ed N. J Pagano. Elsevier, London 1989, pp.161-250.

DOI: 10.1016/b978-0-444-87285-2.50008-x

Google Scholar

[3] Olsson, R. A simplified improved beam anlysis of the DCB specimen. In Composites Science and Technology. ed Bryan, H. Vol 43 No 4 (1992), pp.329-338.

DOI: 10.1016/0266-3538(92)90056-9

Google Scholar

[4] J. H Crews, J.R. Reeder: A mixed-mode bending apparatus for delamination testing. NASA Technical Memorandum 100662. August (1988).

Google Scholar

[5] American Society for Testing and Materials (ASTM): Standards Test Methods for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM D5528-94a, May 15, (1994).

DOI: 10.1520/d5528-01

Google Scholar

[6] European Structural Integrity Society (ESIS), Polymers & Composites Task Group (TC4): Protocols for Interlaminar Fracture Testing of Composites. No. 1-4, April (1992).

DOI: 10.1016/s1566-1369(00)x8001-6

Google Scholar

[7] Davidson, B. D. & Schapery, R. A., Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen. J. Comp. Mat 22(1988), pp.640-656.

DOI: 10.1177/002199838802200704

Google Scholar

[8] B. D Davidson, R. Kruger, M. Konig : Effect of stacking sequence on ERR distribution in multidirectional DCB and ENF specimens. Eng. fract. Mech. Volume 55, Issue 4, 1996, pp.557-569.

DOI: 10.1016/s0013-7944(96)00037-9

Google Scholar

[9] Irwin, G.R., Handbuch der Physik, Springer, Berlin, 1958, Vol 6, pp.551-590.

Google Scholar

[10] Davidson, B.D.: An analytical investigation of delamination front curvature in double cantilever beam specimens. Journal of Composite Materials, Vol. 24- No. 11, 1990, pp.1124-1137.

DOI: 10.1177/002199839002401101

Google Scholar

[11] Davidson, B.D., Koudela, L.: Influence of mode mix of precracking on the delaminaion toughness of laminated composites. Journal of Reinforced Plastics and composites, Vol. 18, No. 15/1999, pp.1408-1414.

DOI: 10.1177/073168449901801504

Google Scholar

[12] Gay. Matériaux composites. 4e éd. Paris: Hermès, 1997, (Materiaux). ISBN 2-86601-586- X. pp.289-332.

Google Scholar

[13] H. Okada, H. Kawai, K. Araki: Engineering Fracture Mechanics 75 (2008) 4466– 4485.

Google Scholar

[14] R. Krueger: NASA/CR-2002-211628. ICASE Report No. 2002- 10.

Google Scholar