Hyperspectral Image Classification Based on Artificial Immune System

Abstract:

Article Preview

The high spectral dimensionality in hyperspectral images causes the reduction of accuracy for common statistical classification methods in these images. Hence the generation and implementation of more complicated methods have gained great importance in this field. One of these methods is the Artificial Immune Systems which is inspired by natural immune system. Despite its great potentiality, it is rarely utilized for spatial sciences and image classification. In this paper a supervised classification algorithm with the application of hyperspectral remote sensing images is proposed. In order to gain better insight into its capability, its accuracy is compared with Artificial Neural Network. The results show better image classification accuracy for the Artificial Immune method.

Info:

Periodical:

Edited by:

David Wang

Pages:

806-812

DOI:

10.4028/www.scientific.net/KEM.500.806

Citation:

F. Samadzadegan et al., "Hyperspectral Image Classification Based on Artificial Immune System", Key Engineering Materials, Vol. 500, pp. 806-812, 2012

Online since:

January 2012

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.